Back to Search Start Over

TUBG1 missense variants underlying cortical malformations disrupt neuronal locomotion and microtubule dynamics but not neurogenesis

Authors :
Nathalie Drouot
Patrick Nusbaum
William Magnant
Binnaz Yalcin
Arnaud Duchon
Loic Broix
Jamel Chelly
Valerie Skory
Stephan C. Collins
Maria-Victoria Hinckelmann
Vadym Sulimenko
Yann Herault
Marie-Christine Birling
Juliette D. Godin
Guillaume Pavlovic
Pavel Dráber
Karen Runge
Laure Asselin
Ekaterina L. Ivanova
Gabrielle Rudolf
Peggy Tilly
Alexandre Vincent
Johan G. Gilet
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)
Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
Institut Cochin (IC UM3 (UMR 8104 / U1016))
Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Institut de génétique et biologie moléculaire et cellulaire (IGBMC)
Université Louis Pasteur - Strasbourg I-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Hôpital Cochin [AP-HP]
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)
Institut Clinique de la Souris (ICS)
Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Biology of Cytoskeleton
Institute of Molecular Genetics
Centre for Integrative Biology - CBI (Inserm U964 - CNRS UMR7104 - IGBMC)
Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Institute of Molecular Genetics of the Czech Academy of Sciences (IMG / CAS)
Czech Academy of Sciences [Prague] (CAS)
UFR Sciences de la Vie, de la Terre et de l'Environnement (Université de Bourgogne) (UFR SVTE)
Université de Bourgogne (UB)
French National Infrastructure for Mouse Phenogenomics (PHENOMIN)
Fédération de Médecine Translationnelle de Strasbourg (FMTS)
Université de Strasbourg (UNISTRA)
Les Hôpitaux Universitaires de Strasbourg (HUS)
Herault, Yann
Source :
Nature Communications, Nature Communications, Nature Publishing Group, 2019, 10 (1), ⟨10.1038/s41467-019-10081-8⟩, Nature Communications, Vol 10, Iss 1, Pp 1-18 (2019), Nature Communications, 2019, 10 (1), pp.100-110. ⟨10.1038/s41467-019-10081-8⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

De novo heterozygous missense variants in the γ-tubulin gene TUBG1 have been linked to human malformations of cortical development associated with intellectual disability and epilepsy. Here, we investigated through in-utero electroporation and in-vivo studies, how four of these variants affect cortical development. We show that TUBG1 mutants affect neuronal positioning, disrupting the locomotion of new-born neurons but without affecting progenitors’ proliferation. We further demonstrate that pathogenic TUBG1 variants are linked to reduced microtubule dynamics but without major structural nor functional centrosome defects in subject-derived fibroblasts. Additionally, we developed a knock-in Tubg1Y92C/+ mouse model and assessed consequences of the mutation. Although centrosomal positioning in bipolar neurons is correct, they fail to initiate locomotion. Furthermore, Tubg1Y92C/+ animals show neuroanatomical and behavioral defects and increased epileptic cortical activity. We show that Tubg1Y92C/+ mice partially mimic the human phenotype and therefore represent a relevant model for further investigations of the physiopathology of cortical malformations.<br />New mutations and genes associated with malformations of cortical development keep being identified, yet there is little known about the underlying cellular mechanisms controlling these impairments. Here, authors generate and characterize a heterozygous TUBG1 knock-in mouse model bearing one of these known mutations and show that TUBG1 mutation leads to the miss-positioning of neurons in the cortical wall due to migration, because of defective microtubules dynamics, and not proliferation defects during corticogenesis.

Details

Language :
English
ISSN :
20411723
Database :
OpenAIRE
Journal :
Nature Communications, Nature Communications, Nature Publishing Group, 2019, 10 (1), ⟨10.1038/s41467-019-10081-8⟩, Nature Communications, Vol 10, Iss 1, Pp 1-18 (2019), Nature Communications, 2019, 10 (1), pp.100-110. ⟨10.1038/s41467-019-10081-8⟩
Accession number :
edsair.doi.dedup.....7593bcb4ef7889f22fe4f4a6a5b20310