Back to Search Start Over

Dynamic rough clustering and its applications

Authors :
René Nowatzke
Georg Peters
Richard Weber
Publication Year :
2012
Publisher :
Elsevier BV, 2012.

Abstract

Dynamic data mining has gained increasing attention in the last decade. It addresses changing data structures which can be observed in many real-life applications, e.g. buying behavior of customers. As opposed to classical, i.e. static data mining where the challenge is to discover pattern inherent in given data sets, in dynamic data mining the challenge is to understand - and in some cases even predict - how such pattern will change over time. Since changes in general lead to uncertainty, the appropriate approaches for uncertainty modeling are needed in order to capture, model, and predict the respective phenomena considered in dynamic environments. As a consequence, the combination of dynamic data mining and soft computing is a very promising research area. The proposed algorithm consists of a dynamic clustering cycle when the data set will be refreshed from time to time. Within this cycle criteria check if the newly arrived data have structurally changed in comparison to the data already analyzed. If yes, appropriate actions are triggered, in particular an update of the initial settings of the cluster algorithm. As we will show, rough clustering offers strong tools to detect such changing data structures. To evaluate the proposed dynamic rough clustering algorithm it has been applied to synthetic as well as to real-world data sets where it provides new insights regarding the underlying dynamic phenomena.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....758f2dbe1549ed1eb861974954c06e3a