Back to Search
Start Over
DFT Modeling of 45S5 and 77S Soda-Lime Phospho-Silicate Glass Surfaces: Clues on Different Bioactivity Mechanism
- Publication Year :
- 2013
-
Abstract
- The reactivity of bioglasses, which is related to the dissolution of cations and orthosilicate groups in the physiological fluid, strongly depends on the key structural features present at the glass surfaces. On the basis of the composition and the synthetic routes employed to make the glass, surfaces with very different characteristics and thus presenting different mechanisms of dissolution can be observed. In this paper, the surface structures of two very different bioglass compositions, namely 45S5 (46.1 SiO2, 24.4 Na2O, 26.9 CaO, and 2.6 P2O5 mol %) and 77S (80.0 SiO2, 16.0 CaO, and 4.0 P2O5 mol %), have been investigated by means of periodic DFT calculations based on a PBE functional and localized Gaussian basis set as encoded in the CRYSTAL code. Our calculations show that the two glass surfaces differ by the relative amount of key structural sites such as NBOs, exposed ions, orthosilicate units, and small rings. We have demonstrated how the number of these sites affects the surface stability and reactivity (bioactivity).
- Subjects :
- Models, Molecular
Surface characterization
Materials science
Surface Properties
DFT
bioglass
glass surface
Ion
Crystal
chemistry.chemical_compound
Soda lime
Computational chemistry
ab initio modeling
bioglasses
Bioglass 45S5
Electrochemistry
General Materials Science
Reactivity (chemistry)
Silicate glass
Dissolution
Spectroscopy
Gaussian basis set
Silicates
Oxides
Surfaces and Interfaces
Calcium Compounds
Phosphorus Compounds
Condensed Matter Physics
Sodium Compounds
chemistry
Chemical engineering
Quantum Theory
Orthosilicate
Glass
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....7587a9672307fd16f059065568ba78c1