Back to Search Start Over

Valores aberrantes em series temporais

Authors :
Ota, Rissa
Hotta, Luiz Koodi, 1952
Neves, Marli Mikael da Costa
Stangenhaus, Gabriela
Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Ciência da Computação
Programa de Pós-Graduação em Estatística
UNIVERSIDADE ESTADUAL DE CAMPINAS
Source :
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP), Universidade Estadual de Campinas (UNICAMP), instacron:UNICAMP
Publication Year :
2021
Publisher :
Universidade Estadual de Campinas - Repositorio Institucional, 2021.

Abstract

Orientador: Luiz Koodi Hotta Dissertação (mestrado) - Universidade Estadual de Campinas. Instituto de Matematica, Estatistica e Ciencia da Computação Resumo: Neste trabalho são discutidos alguns tipos de valores aberrantes (denotado nesse trabalho por outlier) mais citados na literatura de séries temporais e os efeitos que eles podem causar na identificação, estimação e previsão dos modelos, mostrando assim a importância em detectá-los. Nos primeiros dois capítulos são apresentados os modelos de outliers e alguns testes de detecção existentes na literatura. O Capítulo 3 é dedicado ao estudo dos efeitos dos outliers nas estimações, identificações e previsões. No Capítulo 4 são apresentados os efeitos dos outliers presentes nas últimas observações na previsão de valores agregados, comparando os efeitos nas previsões calculadas através de modelos desagregados e agregados. No estudo são considerados os casos de modelos conhecido e desconhecido, sendo este último realizado através de simulações. De um modo geral, a previsão através de modelo agregado, na presença de outlier aditivo (AO), é menos afetada do que a previsão pelo modelo desagregado. Quando um outlier de inovação (IO) está presente na série a previsão pelo modelo agregado é geralmente mais afetada. Isto era esperado porque no caso de modelos conhecidos o IO não tem efeito nas previsões do modelo desagregado. São também realizados estudos para verificar o efeito dos testes usuais de detecção de outlier na previsão, mostrando que, embora na maioria dos casos a utilização dos testes diminuam os vícios de previsão devido aos outliers, em alguns casos eles aumentam o erro quadrático médio de previsão. Isto ocorre principalmente na presença de dois IOs, de sinais trocados, devido à incorreta detecção dos outliers, na posição e/ou tipo. Abstract: Not informed. Mestrado Mestre em Estatística

Details

Database :
OpenAIRE
Journal :
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP), Universidade Estadual de Campinas (UNICAMP), instacron:UNICAMP
Accession number :
edsair.doi.dedup.....75809caad3ea421431a7501442a62682
Full Text :
https://doi.org/10.47749/t/unicamp.1996.107829