Back to Search Start Over

General Utilization of Fluorescent Polyisoprenoids with Sugar Selective Phosphoglycosyltransferases

Authors :
Beth A. Scarbrough
Jerry M. Troutman
Colleen R. Eade
Tiffany C. Williams
Amanda J. Reid
Claire E. Gates
Source :
Biochemistry
Publication Year :
2019
Publisher :
American Chemical Society (ACS), 2019.

Abstract

The protective surfaces of bacteria are comprised of polysaccharides and are involved in host invasion and colonization, host immune system evasion, as well as antibacterial resistance. A major barrier to our fundamental understanding of these complex surface polysaccharides lies in the tremendous diversity in glycan composition among bacterial species. The polyisoprenoid bactoprenyl phosphate (or undecaprenyl phosphate) is an essential lipid carrier necessary for early stages of glycopolymer assembly. Because of the ubiquity of bactoprenyl phosphate in these critical processes, molecular probes appended to this lipid carrier simplify identification of enzymatic roles during polysaccharide bioassembly. A limited number of these probes exist in the literature or have been assessed with such pathways, and the limits of their use are not currently known. Herein, we devise an efficient method for producing fluorescently modified bactoprenyl probes. We further expand our previous efforts utilizing 2-nitrileaniline, and additionally prepare nitrobenzoxadizol tagged bactoprenyl phosphate for the first time. We then assess enzyme promiscuity of these two probes utilizing four well characterized initiating phosphoglycosyltransferases: CPS2E (Streptococcus pneumoniae), WbaP (Salmonella enterica), WecA (Escherichia coli) and WecP (Aeromonas hydrophilia). Both probes serve as substrates for these enzymes and could be readily used to investigate a wide range of bacterial glycoassembly pathways. Interestingly, we have also identified unique solubility requirements for the nitrobenzoxadizol moiety for efficient enzymatic utilization that was not observed for the 2-nitrileaniline.

Details

ISSN :
15204995 and 00062960
Volume :
59
Database :
OpenAIRE
Journal :
Biochemistry
Accession number :
edsair.doi.dedup.....754c503f58d1e27e41b9b49571fc6238