Back to Search Start Over

Local characteristics and tangency of vector-valued martingales

Authors :
Ivan Yaroslavtsev
Source :
Probab. Surveys 17 (2020), 545-676, Probability Surveys, 17
Publication Year :
2020

Abstract

This paper is devoted to tangent martingales in Banach spaces. We provide the definition of tangency through local characteristics, basic $L^p$- and $\phi$-estimates, a precise construction of a decoupled tangent martingale, new estimates for vector-valued stochastic integrals, and several other claims concerning tangent martingales and local characteristics in infinite dimensions. This work extends various real-valued and vector-valued results in this direction e.g. due to Grigelionis, Hitczenko, Jacod, Kallenberg, Kwapie\'{n}, McConnell, and Woyczy\'{n}ski. The vast majority of the assertions presented in the paper is done under the sufficient and necessary UMD assumption on the corresponding Banach space.<br />Comment: Final version, to appear in Probability Surveys

Details

Language :
English
Database :
OpenAIRE
Journal :
Probab. Surveys 17 (2020), 545-676, Probability Surveys, 17
Accession number :
edsair.doi.dedup.....754b14f37558fc94215d68e08d7f7bcd