Back to Search Start Over

In toto differentiation of human amniotic membrane towards the Schwann cell lineage

Authors :
Sabrina Riedl
Andreas H. Teuschl
Christina M.A.P. Schuh
Simone Hennerbichler
Sylvia Nürnberger
Ara Hacobian
Heinz Redl
Asmita Banerjee
Susanne Wolbank
Johann Eibl
Source :
Cell and tissue banking. 15(2)
Publication Year :
2013

Abstract

Human amniotic membrane (hAM) is a tissue containing cells with proven stem cell properties. In its decellularized form it has been successfully applied as nerve conduit biomaterial to improve peripheral nerve regeneration in injury models. We hypothesize that viable hAM without prior cell isolation can be differentiated towards the Schwann cell lineage to generate a possible alternative to commonly applied tissue engineering materials for nerve regeneration. For in vitro Schwann cell differentiation, biopsies of hAM of 8 mm diameter were incubated with a sequential order of neuronal induction and growth factors for 21 days and characterized for cellular viability and the typical glial markers glial fibrillary acidic protein (GFAP), S100β, p75 and neurotrophic tyrosine kinase receptor (NTRK) using immunohistology. The secretion of the neurotrophic factors brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) was quantified by ELISA. The hAM maintained high viability, especially under differentiation conditions (90.2 % ± 41.6 day 14; 80.0 % ± 44.5 day 21 compared to day 0). Both, BDNF and GDNF secretion was up-regulated upon differentiation. The fresh membrane stained positive for GFAP and p75 and NTRK, which was strongly increased after culture in differentiation conditions. Especially the epithelial layer within the membrane exhibited a change in morphology upon differentiation forming a multi-layered epithelium with intense accumulations of the marker proteins. However, S100β was expressed at equal levels and equal distribution in fresh and cultured hAM conditions. Viable hAM may be a promising alternative to present formulations used for peripheral nerve regeneration.

Details

ISSN :
15736814
Volume :
15
Issue :
2
Database :
OpenAIRE
Journal :
Cell and tissue banking
Accession number :
edsair.doi.dedup.....7536e6abada6b8e9f4a8427dc496d244