Back to Search Start Over

High-dimensional analysis of single-cell flow cytometry data predicts relapse in childhood acute lymphoblastic leukaemia

Authors :
Águeda Molinos Quintana
Víctor M. Pérez-García
Manuel Ramírez-Orellana
Teresa Caballero-Velázquez
Juan Francisco Rodríguez Gutiérrez
Ana Castillo Robleda
María Rosa
Lourdes Hermosín-Ramos
Juan Luis Fernández-Martínez
Álvaro Martínez-Rubio
Cristina Blázquez Goñi
Salvador Chulián
Matemáticas
Source :
Scopus, RUO. Repositorio Institucional de la Universidad de Oviedo, instname, Cancers 2021, 13(1), 17, RODIN. Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz, Cancers, Volume 13, Issue 1, Cancers, Vol 13, Iss 17, p 17 (2021), RODIN: Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz, Universidad de Cádiz
Publication Year :
2021

Abstract

Artificial intelligence methods may help in unveiling information that is hidden in high-dimensional oncological data. Flow cytometry studies of haematological malignancies provide quantitative data with the potential to be used for the construction of response biomarkers. Many computational methods from the bioinformatics toolbox can be applied to these data, but they have not been exploited in their full potential in leukaemias, specifically for the case of childhood B-cell Acute Lymphoblastic Leukaemia. In this paper, we analysed flow cytometry data that were obtained at diagnosis from 56 paediatric B-cell Acute Lymphoblastic Leukaemia patients from two local institutions. Our aim was to assess the prognostic potential of immunophenotypical marker expression intensity. We constructed classifiers that are based on the Fisher&rsquo<br />s Ratio to quantify differences between patients with relapsing and non-relapsing disease. We also correlated this with genetic information. The main result that arises from the data was the association between subexpression of marker CD38 and the probability of relapse.

Details

Database :
OpenAIRE
Journal :
Scopus, RUO. Repositorio Institucional de la Universidad de Oviedo, instname, Cancers 2021, 13(1), 17, RODIN. Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz, Cancers, Volume 13, Issue 1, Cancers, Vol 13, Iss 17, p 17 (2021), RODIN: Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz, Universidad de Cádiz
Accession number :
edsair.doi.dedup.....75054553c4f524af1f58e2f50e484593
Full Text :
https://doi.org/10.0557/v1