Back to Search
Start Over
Integrative assessment of biomarker responses in teleostean fishes exposed to glyphosate-based herbicide (Excel Mera 71)
- Source :
- Emerging Contaminants, Vol 2, Iss 4, Pp 191-203 (2016)
- Publication Year :
- 2016
- Publisher :
- Elsevier BV, 2016.
-
Abstract
- Present study deals with the effects of glyphosate-based herbicide, Excel Mera 71 on Anabas testudineus , Heteropnestes fossilis and Oreochromis niloticus in field conditions (1.85 kg/ha) based on anti-oxidative, metabolic and digestive responses. For this study following biomarkers viz., acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST), alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), amylase, lipase and protease were investigated in gill, stomach, intestine, liver, kidney, brain, muscle and spinal cord of the concerned fish species. Enzyme activities were significantly altered by glyphosate exposure after 30 days, these activities were tissue as well as species specific. The results suggested that these biomarkers could be used to assess the ecological risks of glyphosate on fish. Bioaccumulation factor (BAF) studied in different aquatic natural macrophytes showed order of Alternanthera philoxeroides > Azolla pinnata > Lemna sp. (Minor) > Lemna sp. (Major) > Pistia stratiotes , while transfer factor (TF) showed the order of Pistia stratiotes > Alternanthera philoxeroides > Lemna sp. Bioconcentration factor (BCF) study showed maximum accumulation of glyphosate in liver, kidney or intestine, and minimum either in bone or stomach irrespective of fish species. An integrated biomarker response (IBR), which uses a battery of biomarkers to calculate the standardized scores for each biomarker responses ranging from physiological to biochemical/molecular responses, was evaluated by combining the multiple biomarkers into a single value to evaluate quantitatively the toxicological effects of glyphosate. In general, the multiple indices exhibited variations and A. testudineus was more affected than other fish species; maximum IBR value was observed for LPO and minimum in case of ALT. The order of integrated biomarkers caused by glyphosate treatment was recorded as follows: LPO > Amylase > CAT > AST > Protease > Lipase > ALP > GST > AChE > ALT for A. testudineus , LPO > AChE > AST > Protease > CAT > Amylase > Lipase > GST > ALP > ALT for H. fossilis and AChE > CAT > LPO > AST > Amylase > GST > Protease > ALP > Lipase > ALT for O. niloticus . Finally, IBR analysis is able to distinguish the variations between different parameters and might be a useful tool for the quantification of integrated responses induced by glyphosate toward fish.
- Subjects :
- Health, Toxicology and Mutagenesis
Azolla pinnata
0211 other engineering and technologies
Anabas testudineus
02 engineering and technology
010501 environmental sciences
Toxicology
01 natural sciences
Excel Mera 71
chemistry.chemical_compound
Animal science
lcsh:Environmental pollution
Bioaccumulation factor (BAF)
Pistia
0105 earth and related environmental sciences
021110 strategic, defence & security studies
Lemna
biology
Public Health, Environmental and Occupational Health
Biomarker
biology.organism_classification
Oreochromis
Integrated biomarker response (IBR)
chemistry
Bioconcentration factor (BCF)
Transfer factor (TF)
Alternanthera philoxeroides
Catalase
Glyphosate
lcsh:TD172-193.5
biology.protein
Subjects
Details
- ISSN :
- 24056650
- Volume :
- 2
- Database :
- OpenAIRE
- Journal :
- Emerging Contaminants
- Accession number :
- edsair.doi.dedup.....74f9d1611eb44a3c7cf0e31ad0b6ff16