Back to Search Start Over

Stationary Kirchhoff equations with powers

Authors :
Emmanuel Hebey
Analyse, Géométrie et Modélisation (AGM - UMR 8088)
CY Cergy Paris Université (CY)-Centre National de la Recherche Scientifique (CNRS)
Source :
Advances in Calculus of Variation, Advances in Calculus of Variation, Walter de Gruyter GmbH, 2018, 2, pp.139-160. ⟨10.1515/acv-2016-0025⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

We discuss existence of solutions, compactness and stability properties in closed manifolds for the critical Kirchhoff equations ( a + b ∫ M | ∇ u | 2 d v g ) θ 0 Δ g u + h u = u p - 1 , \Bigg{(}a+b\int_{M}\lvert\nabla u|^{2}\,dv_{g}\Bigg{)}^{\theta_{0}}\Delta_{g}u% +hu=u^{p-1}, where Δ g {\Delta_{g}} is the Laplace–Beltrami operator, h is a C 1 {C^{1}} -function in M, p ∈ ( 2 , 2 ⋆ ] {p\in(2,2^{\star}]} , a , b , θ 0 > 0 {a,b,\theta_{0}>0} are positive real numbers, and 2 ⋆ {2^{\star}} is the critical Sobolev exponent. A fractional critical dimension d 0 = 2 ⁢ ( 1 + θ 0 ) θ 0 {d_{0}=\frac{2(1+\theta_{0})}{\theta_{0}}} appears in the critical case p = 2 ⋆ {p=2^{\star}} .

Details

Language :
English
ISSN :
18648266
Database :
OpenAIRE
Journal :
Advances in Calculus of Variation, Advances in Calculus of Variation, Walter de Gruyter GmbH, 2018, 2, pp.139-160. ⟨10.1515/acv-2016-0025⟩
Accession number :
edsair.doi.dedup.....74c1e619f93687af2c35882d24a954a5
Full Text :
https://doi.org/10.1515/acv-2016-0025⟩