Back to Search
Start Over
Stationary Kirchhoff equations with powers
- Source :
- Advances in Calculus of Variation, Advances in Calculus of Variation, Walter de Gruyter GmbH, 2018, 2, pp.139-160. ⟨10.1515/acv-2016-0025⟩
- Publication Year :
- 2018
- Publisher :
- HAL CCSD, 2018.
-
Abstract
- We discuss existence of solutions, compactness and stability properties in closed manifolds for the critical Kirchhoff equations ( a + b ∫ M | ∇ u | 2 d v g ) θ 0 Δ g u + h u = u p - 1 , \Bigg{(}a+b\int_{M}\lvert\nabla u|^{2}\,dv_{g}\Bigg{)}^{\theta_{0}}\Delta_{g}u% +hu=u^{p-1}, where Δ g {\Delta_{g}} is the Laplace–Beltrami operator, h is a C 1 {C^{1}} -function in M, p ∈ ( 2 , 2 ⋆ ] {p\in(2,2^{\star}]} , a , b , θ 0 > 0 {a,b,\theta_{0}>0} are positive real numbers, and 2 ⋆ {2^{\star}} is the critical Sobolev exponent. A fractional critical dimension d 0 = 2 ( 1 + θ 0 ) θ 0 {d_{0}=\frac{2(1+\theta_{0})}{\theta_{0}}} appears in the critical case p = 2 ⋆ {p=2^{\star}} .
- Subjects :
- Applied Mathematics
010102 general mathematics
Mathematical analysis
Kirchhoff integral theorem
01 natural sciences
Stability (probability)
Kirchhoff equations
Kirchhoff's diffraction formula
010101 applied mathematics
Compact space
Kirchhoff's circuit laws
0101 mathematics
[MATH]Mathematics [math]
Analysis
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 18648266
- Database :
- OpenAIRE
- Journal :
- Advances in Calculus of Variation, Advances in Calculus of Variation, Walter de Gruyter GmbH, 2018, 2, pp.139-160. ⟨10.1515/acv-2016-0025⟩
- Accession number :
- edsair.doi.dedup.....74c1e619f93687af2c35882d24a954a5
- Full Text :
- https://doi.org/10.1515/acv-2016-0025⟩