Back to Search
Start Over
Automated fusion of multimodal imaging data for identifying epileptogenic lesions in patients with inconclusive magnetic resonance imaging
- Source :
- Human Brain Mapping
- Publication Year :
- 2021
- Publisher :
- Wiley, 2021.
-
Abstract
- Many methods applied to data acquired by various imaging modalities have been evaluated for their benefit in localizing lesions in magnetic resonance (MR) negative epilepsy patients. No approach has proven to be a stand‐alone method with sufficiently high sensitivity and specificity. The presented study addresses the potential benefit of the automated fusion of results of individual methods in presurgical evaluation. We collected electrophysiological, MR, and nuclear imaging data from 137 patients with pharmacoresistant MR‐negative/inconclusive focal epilepsy. A subgroup of 32 patients underwent surgical treatment with known postsurgical outcomes and histopathology. We employed a Gaussian mixture model to reveal several classes of gray matter tissue. Classes specific to epileptogenic tissue were identified and validated using the surgery subgroup divided into two disjoint sets. We evaluated the classification accuracy of the proposed method at a voxel‐wise level and assessed the effect of individual methods. The training of the classifier resulted in six classes of gray matter tissue. We found a subset of two classes specific to tissue located in resected areas. The average classification accuracy (i.e., the probability of correct classification) was significantly higher than the level of chance in the training group (0.73) and even better in the validation surgery subgroup (0.82). Nuclear imaging, diffusion‐weighted imaging, and source localization of interictal epileptic discharges were the strongest methods for classification accuracy. We showed that the automatic fusion of results can identify brain areas that show epileptogenic gray matter tissue features. The method might enhance the presurgical evaluations of MR‐negative epilepsy patients.<br />There is no known stand‐alone imaging method for epileptogenic zone identification in nonlesional epilepsy. We examined the potential benefit of the automated fusion of results from individual methods. The proposed method can identify epileptogenic tissue with high accuracy at the voxel level, that is, at a millimeters scale.
- Subjects :
- Adult
Male
medicine.medical_specialty
Nuclear imaging
nonlesional epilepsy
Multimodal Imaging
050105 experimental psychology
03 medical and health sciences
Epilepsy
0302 clinical medicine
Neuroimaging
medicine
Humans
0501 psychology and cognitive sciences
Radiology, Nuclear Medicine and imaging
In patient
Ictal
Research Articles
Tomography, Emission-Computed, Single-Photon
Multimodal imaging
data fusion
neuroimaging
Radiological and Ultrasound Technology
medicine.diagnostic_test
business.industry
05 social sciences
Electroencephalography
Magnetic resonance imaging
medicine.disease
Magnetic Resonance Imaging
Neurology
seizure onset zone
Positron-Emission Tomography
Female
Histopathology
Epilepsies, Partial
Neurology (clinical)
Radiology
Anatomy
business
030217 neurology & neurosurgery
Research Article
Subjects
Details
- ISSN :
- 10970193 and 10659471
- Volume :
- 42
- Database :
- OpenAIRE
- Journal :
- Human Brain Mapping
- Accession number :
- edsair.doi.dedup.....7493d82b1b9a748fe451954f41746fe1
- Full Text :
- https://doi.org/10.1002/hbm.25413