Back to Search
Start Over
Determining Optimal Operation Parameters for Reducing PCDD/F Emissions (I-TEQ values) from the Iron Ore Sintering Process by Using the Taguchi Experimental Design
- Source :
- Environmental Science & Technology. 42:5298-5303
- Publication Year :
- 2008
- Publisher :
- American Chemical Society (ACS), 2008.
-
Abstract
- This study is the first one using the Taguchi experimental design to identify the optimal operating condition for reducing polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/ Fs) formations during the iron ore sintering process. Four operating parameters, including the water content (Wc; range = 6.0-7.0 wt %), suction pressure (Ps; range = 1000-1400 mmH2O), bed height (Hb; range = 500-600 mm), and type of hearth layer (including sinter, hematite, and limonite), were selected for conducting experiments in a pilot scale sinter pot to simulate various sintering operating conditions of a real-scale sinter plant We found that the resultant optimal combination (Wc = 6.5 wt%, Hb = 500 mm, Ps = 1000 mmH2O, and hearth layer = hematite) could decrease the emission factor of total PCDD/Fs (total EF(PCDD/Fs)) up to 62.8% by reference to the current operating condition of the real-scale sinter plant (Wc = 6.5 wt %, Hb = 550 mm, Ps = 1200 mmH2O, and hearth layer = sinter). Through the ANOVA analysis, we found that Wc was the most significant parameter in determining total EF(PCDD/Fs (accounting for 74.7% of the total contribution of the four selected parameters). The resultant optimal combination could also enhance slightly in both sinter productivity and sinter strength (30.3 t/m2/day and 72.4%, respectively) by reference to those obtained from the reference operating condition (29.9 t/m (2)/day and 72.2%, respectively). The above results further ensure the applicability of the obtained optimal combination for the real-scale sinter production without interfering its sinter productivity and sinter strength.
Details
- ISSN :
- 15205851 and 0013936X
- Volume :
- 42
- Database :
- OpenAIRE
- Journal :
- Environmental Science & Technology
- Accession number :
- edsair.doi.dedup.....7453686670e38763d68e2e1a328d80df
- Full Text :
- https://doi.org/10.1021/es703245d