Back to Search Start Over

Brains on beats

Authors :
Güçlü, U.
Thielen, J.
Hanke, M.
Gerven, M.A.J. van
Lee, D.D.
Sugiyama, M.
Luxburg, U.V.
Guyon, I.
Garnett, R.
Lee, D.D.
Sugiyama, M.
Luxburg, U.V.
Guyon, I.
Garnett, R.
Source :
Lee, D.D.; Sugiyama, M.; Luxburg, U.V. (ed.), Advances in Neural Information Processing Systems 29 (NIPS 2016), pp. 1-9, Scopus-Elsevier, Lee, D.D.; Sugiyama, M.; Luxburg, U.V. (ed.), Advances in Neural Information Processing Systems 29 (NIPS 2016), 1-9. [S.l.] : Neural Information Processing Systems Foundation, STARTPAGE=1;ENDPAGE=9;ISSN=1049-5258;TITLE=Lee, D.D.; Sugiyama, M.; Luxburg, U.V. (ed.), Advances in Neural Information Processing Systems 29 (NIPS 2016)
Publication Year :
2016

Abstract

Contains fulltext : 166770.pdf (Publisher’s version ) (Open Access) We developed task-optimized deep neural networks (DNNs) that achieved state-of-the-art performance in different evaluation scenarios for automatic music tagging. These DNNs were subsequently used to probe the neural representations of music. Representational similarity analysis revealed the existence of a representational gradient across the superior temporal gyrus (STG). Anterior STG was shown to be more sensitive to low-level stimulus features encoded in shallow DNN layers whereas posterior STG was shown to be more sensitive to high-level stimulus features encoded in deep DNN layers. 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, December 5 - 10, 2016, 05 december 2016

Details

ISSN :
10495258
Database :
OpenAIRE
Journal :
Lee, D.D.; Sugiyama, M.; Luxburg, U.V. (ed.), Advances in Neural Information Processing Systems 29 (NIPS 2016)
Accession number :
edsair.doi.dedup.....74369863a5bc13b209a37eb2c2bc0e27