Back to Search Start Over

FeNC Oxygen Reduction Electrocatalyst with High Utilization Penta‐Coordinated Sites

Authors :
Jesús Barrio
Angus Pedersen
Saurav Ch. Sarma
Alexander Bagger
Mengjun Gong
Silvia Favero
Chang‐Xin Zhao
Ricardo Garcia‐Serres
Alain Y. Li
Qiang Zhang
Frédéric Jaouen
Frédéric Maillard
Anthony Kucernak
Ifan E. L. Stephens
Maria‐Magdalena Titirici
Imperial College London
Department of Chemistry [Imperial College London]
Department of Chemical Engineering, Tsinghua University
Physiochimie des Métaux (PMB)
Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249)
Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
Bolin Centre for Climate Research
Stockholm University
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM)
Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)
Université de Montpellier (UM)
Electrochimie Interfaciale et Procédés (EIP)
Laboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces (LEPMI)
Institut de Chimie du CNRS (INC)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
WPI Advanced Institute for Materials Research (WPI-AIMR)
Tohoku University [Sendai]
ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017)
ANR-11-LABX-0003,ARCANE,Grenoble, une chimie bio-motivée(2011)
European Project: 866402,NitroScission
European Project: 892614,HAEMOGLOBIN
European Project: 896637 ,DimerCat
Source :
Advanced Materials, Advanced Materials, 2023, pp.2211022. ⟨10.1002/adma.202211022⟩
Publication Year :
2023
Publisher :
Wiley, 2023.

Abstract

International audience; Atomic Fe in N-doped carbon (FeNC) electrocatalysts for oxygen (O$_2$) reduction at the cathode of proton exchange membrane fuel cells (PEMFCs) are the most promising alternative to platinum-group-metal catalysts. Despite recent progress on atomic FeNC O$_2$ reduction, their controlled synthesis and stability for practical applications remains challenging. A two-step synthesis approach has recently led to significant advances in terms of Fe-loading and mass activity; however, the Fe utilisation remains low owing to the difficulty of building scaffolds with sufficient porosity that electrochemically exposes the active sites. Herein, we addressed this issue by coordinating Fe in a highly porous nitrogen doped carbon support (~3295 m$^2$ g$^{-1}$), prepared by pyrolysis of inexpensive 2,4,6triaminopyrimidine and a Mg$^{2+}$ salt active site template and porogen. Upon Fe coordination, a high electrochemical active site density of 2.54×10$^{19}$ sites g$_{FeNC}$$^{-1}$ and a record 52% FeN$_x$ electrochemical utilisation based on in situ nitrite stripping was achieved. The Fe single atoms are characterised pre-and post-electrochemical accelerated stress testing by aberration-corrected high-angle annular dark field scanning transmission electron microscopy, showing no Fe clustering. Moreover, ex situ X-ray absorption spectroscopy and low-temperature Mössbauer spectroscopy suggest the presence of penta-coordinated Fe sites, which were further studied by density functional theory calculations.

Details

ISSN :
15214095 and 09359648
Volume :
35
Database :
OpenAIRE
Journal :
Advanced Materials
Accession number :
edsair.doi.dedup.....73f5a21504dabb1d71ca3746b19c5af0
Full Text :
https://doi.org/10.1002/adma.202211022