Back to Search Start Over

Most mitochondrial dGTP is tightly bound to respiratory complex I through the NDUFA10 subunit

Authors :
David Molina-Granada
Emiliano González-Vioque
Marris G. Dibley
Raquel Cabrera-Pérez
Antoni Vallbona-Garcia
Javier Torres-Torronteras
Leonid A. Sazanov
Michael T. Ryan
Yolanda Cámara
Ramon Martí
Institut Català de la Salut
[Molina-Granada D, Cabrera-Pérez R, Torres-Torronteras J, Cámara Y, Martí R] Grup de Recerca de Patologia Neuromuscular i Mitocondrial, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain. [González-Vioque E] Grup de Recerca de Patologia Neuromuscular i Mitocondrial, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain. Department of Clinical Biochemistry, Hospital Universitario Puerta del Hierro-Majadahonda, Madrid, Spain. [Dibley MG] Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia. [Vallbona-Garcia A] Grup de Recerca de Patologia Neuromuscular i Mitocondrial, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain
Vall d'Hebron Barcelona Hospital Campus
Source :
Scientia
Publication Year :
2022
Publisher :
Nature Research, 2022.

Abstract

Biochemistry; Molecular medicine Bioquímica; Medicina molecular Bioquímica; Medicina molecular Imbalanced mitochondrial dNTP pools are known players in the pathogenesis of multiple human diseases. Here we show that, even under physiological conditions, dGTP is largely overrepresented among other dNTPs in mitochondria of mouse tissues and human cultured cells. In addition, a vast majority of mitochondrial dGTP is tightly bound to NDUFA10, an accessory subunit of complex I of the mitochondrial respiratory chain. NDUFA10 shares a deoxyribonucleoside kinase (dNK) domain with deoxyribonucleoside kinases in the nucleotide salvage pathway, though no specific function beyond stabilizing the complex I holoenzyme has been described for this subunit. We mutated the dNK domain of NDUFA10 in human HEK-293T cells while preserving complex I assembly and activity. The NDUFA10E160A/R161A shows reduced dGTP binding capacity in vitro and leads to a 50% reduction in mitochondrial dGTP content, proving that most dGTP is directly bound to the dNK domain of NDUFA10. This interaction may represent a hitherto unknown mechanism regulating mitochondrial dNTP availability and linking oxidative metabolism to DNA maintenance. We thank Dr, Luke Formosa (Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia) for his valuable advice and assistance on NDUFA10 molecular studies and Dr. Francesc Canals and his team (Proteomics Laboratory, Vall d’Hebron Institute of Oncology [VHIO], Universitat Autònoma de Barcelona, Barcelona, Spain) for their assistance with LC-MS/MS analyses. This work was supported by the Spanish Ministry of Industry, Economy and Competitiveness [grants BFU2014-52618-R, SAF2017-87506, and PID2020-112929RB-I00 to Y.C.], by the Spanish Instituto de Salud Carlos III [grants PI21/00554 and PMP15/00025 to R.M.], co-financed by the European Regional Development Fund (ERDF), and by an NHMRC Project grant to M.R. (GNT1164459).

Details

Language :
English
Database :
OpenAIRE
Journal :
Scientia
Accession number :
edsair.doi.dedup.....73e4bd2bc66100226dcffa0a7e064ced