Back to Search Start Over

PAC learning under helpful distributions

Authors :
François Denis
Rémi Gilleron
Gilleron, Rémi
Groupe de Recherche en Apprentissage Automatique (GRAppA - LIFL)
Université de Lille, Sciences et Technologies-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)
Laboratoire d'Informatique Fondamentale de Lille (LIFL)
Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)
Source :
Lecture Notes in Computer Science ISBN: 9783540635772, ALT, RAIRO-Theoretical Informatics and Applications (RAIRO: ITA), RAIRO-Theoretical Informatics and Applications (RAIRO: ITA), 2001, 35 (2), pp.129--148
Publication Year :
1997
Publisher :
HAL CCSD, 1997.

Abstract

International audience; A PAC teaching model -under helpful distributions - is proposed which introduces the classical ideas of teaching models within the PAC setting: a polynomial-sized teaching set is associated with each target concept; the criterion of success is PAC identification; an additional parameter, namely the inverse of the minimum probability assigned to any example in the teaching set, is associated with each distribution; the learning algorithm running time takes this new parameter into account. An Occam razor theorem and its converse are proved. Some classical classes of boolean functions, such as Decision Lists, DNF and CNF formulas are proved learnable in this model. Comparisons with other teaching models are made: learnability in the Goldman and Mathias model implies PAC learnability under helpful distributions. Note that Decision lists and DNF are not known to be learnable in the Goldman and Mathias model. A new simple PAC model, where "simple" refers to Kolmogorov complexity, is introduced. We show that most learnability results obtained within previously defined simple PAC models can be simply derived from more general results in our model.

Details

Language :
English
ISBN :
978-3-540-63577-2
ISSN :
09883754 and 1290385X
ISBNs :
9783540635772
Database :
OpenAIRE
Journal :
Lecture Notes in Computer Science ISBN: 9783540635772, ALT, RAIRO-Theoretical Informatics and Applications (RAIRO: ITA), RAIRO-Theoretical Informatics and Applications (RAIRO: ITA), 2001, 35 (2), pp.129--148
Accession number :
edsair.doi.dedup.....73c6d71807657e39c69a6e68a78e89f8