Back to Search Start Over

Adaptation of multiscale function extension to inexact matching. Application to the mapping of individuals to a learnt manifold

Authors :
Marta Sitges
Vicent Caselles
Nicolas Duchateau
Mathieu De Craene
Cardiology Department, Thorax Clinic Institute, Hospital Cliınic, Institut d'Investigacions Biomèdiques [Barcelona]
Universitat de Barcelona (UB)
MedisysResearch Lab (Medisys)
Philips Research
Departament de Tecnologies de la Informació i les Comunicacions
Universitat Pompeu Fabra [Barcelona] (UPF)
Source :
SEE International Conference on Geometric Science of Information (GSI 2013), SEE International Conference on Geometric Science of Information (GSI 2013), 2013, Paris, France. pp.578-586, ⟨10.1007/978-3-642-40020-9_64⟩, Lecture Notes in Computer Science ISBN: 9783642400193, GSI
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

International audience; This paper targets the specific issue of out-of-sample interpolation when mapping individuals to a learnt manifold. This process involves two successive interpolations, which we formulate by means of kernel functions: from the ambient space to the coordinates space parametrizing the manifold and reciprocally. We combine two existing interpolation schemes: (i) inexact matching, to take into account the data dispersion around the manifold, and (ii) a multiscale strategy, to overcome single kernel scale limitations. Experiments involve synthetic data, and real data from 108 subjects, representing myocardial motion patterns used for the comparison of individuals to both normality and to a given abnormal pattern, whose manifold representation has been learnt previously.

Details

Language :
English
ISBN :
978-3-642-40019-3
ISBNs :
9783642400193
Database :
OpenAIRE
Journal :
SEE International Conference on Geometric Science of Information (GSI 2013), SEE International Conference on Geometric Science of Information (GSI 2013), 2013, Paris, France. pp.578-586, ⟨10.1007/978-3-642-40020-9_64⟩, Lecture Notes in Computer Science ISBN: 9783642400193, GSI
Accession number :
edsair.doi.dedup.....739df88a00fc6562d7a4296dd933ae75