Back to Search Start Over

The Implantable Pediatric Artificial Lung: Interim Report on the Development of an End-Stage Lung Failure Model

Authors :
Ryan P. Davis
Marie S. Cornell
Fares Alghanem
Hayley R. Hoffman
Robert H. Bartlett
John M. Trahanas
Alvaro Rojas-Pena
Ronald B. Hirschl
Benjamin S. Bryner
Publication Year :
2015

Abstract

An implantable pediatric artificial lung (PAL) may serve as a bridge to lung transplantation for children with end-stage lung failure (ESLF); however, an animal model of pediatric lung failure is needed to evaluate the efficacy of PAL before it can enter clinical trials. The objective of this study was to assess ligation of the right pulmonary artery (rPA) as a model for pediatric ESLF. Seven lambs weighing 20-30 kg underwent rPA ligation and were recovered and monitored for up to 4 days. Intraoperatively, rPA ligation significantly increased physiologic dead space fraction (Vd/Vt; baseline = 48.6 ± 5.7%, rPA ligation = 60.1 ± 5.2%, p = 0.012), mean pulmonary arterial pressure (mPPA; baseline = 17.4 ± 2.2 mm Hg, rPA ligation = 28.5 ± 5.2 mm Hg, p < 0.001), and arterial partial pressure of carbon dioxide (baseline = 40.4 ± 9.3 mm Hg, rPA ligation = 57.3 ± 12.7 mm Hg, p = 0.026). Of the seven lambs, three were unable to be weaned from mechanical ventilation postoperatively, three were successfully weaned but suffered cardiorespiratory failure within 4 days, and one survived all 4 days. All four animals that were successfully weaned from mechanical ventilation had persistent pulmonary hypertension (mPPA = 28.6 ± 2.2 mm Hg) and remained tachypneic (respiratory rate = 63 ± 21 min). Three of the four recovered lambs required supplemental oxygen. We conclude that rPA ligation creates the physiologic derangements commonly seen in pediatric ESLF and may be suitable for testing and implanting a PAL.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....7381d3814c4b7f019c4a23c57d345f1a