Back to Search
Start Over
Hydrogen Sensing Using Paper Sensors with Pencil Marks Decorated with Palladium
- Source :
- Sensors (Basel, Switzerland), Sensors, Volume 19, Issue 14, Sensors, Vol 19, Iss 14, p 3050 (2019)
- Publication Year :
- 2019
- Publisher :
- MDPI, 2019.
-
Abstract
- Paper-based sensors fabricated using the pencil-on-paper method are expected to find wide usage in many fields owing to their low cost and high reproducibility. Here, hydrogen (H2) detection was realized by applying palladium (Pd) nanoparticles (NPs) to electronic circuits printed on paper using a metal mask and a pencil. We confirmed that multilayered graphene was produced by the pencil, and then characterized Pd NPs were added to the pencil marks. To evaluate the gas-sensing ability of the sensor, its sensitivities and reaction rates in the presence and absence of H2 were measured. In addition, sensing tests performed over a wide range of H2 concentrations confirmed that the sensor had a detection limit as low as 1 ppm. Furthermore, the sensor reacted within approximately 50 s at all H2 concentrations tested. The recovery time of the sensor was 32 s at 1 ppm and 78 s at 1000 ppm. Sensing tests were also performed using Pd NPs of different sizes to elucidate the relationship between the sensing rate and catalyst size. The experimental results confirmed the possibility of fabricating paper-based gas sensors with a superior sensing capability and response rate.
- Subjects :
- Materials science
Hydrogen
chemistry.chemical_element
Nanoparticle
02 engineering and technology
010402 general chemistry
lcsh:Chemical technology
01 natural sciences
Biochemistry
paper-based sensor
Article
H2 sensing
Analytical Chemistry
law.invention
law
lcsh:TP1-1185
Electrical and Electronic Engineering
chemiresistor
Instrumentation
Chemiresistor
Detection limit
Reproducibility
business.industry
Graphene
021001 nanoscience & nanotechnology
pencil marks
palladium
Atomic and Molecular Physics, and Optics
0104 chemical sciences
Pencil (optics)
chemistry
hydrogen
Optoelectronics
0210 nano-technology
business
Palladium
Subjects
Details
- Language :
- English
- ISSN :
- 14248220
- Volume :
- 19
- Issue :
- 14
- Database :
- OpenAIRE
- Journal :
- Sensors (Basel, Switzerland)
- Accession number :
- edsair.doi.dedup.....730d151e9951bc0f70375a3471932481