Back to Search
Start Over
Glutathione contributes to resistance responses to TMV through a differential modulation of salicylic acid and reactive oxygen species
- Source :
- Molecular Plant Pathology
- Publication Year :
- 2021
- Publisher :
- Wiley, 2021.
-
Abstract
- Systemic acquired resistance (SAR) is induced by pathogens and confers protection against a broad range of pathogens. Several SAR signals have been characterized, but the nature of the other unknown signalling by small metabolites in SAR remains unclear. Glutathione (GSH) has long been implicated in the defence reaction against biotic stress. However, the mechanism that GSH increases plant tolerance against virus infection is not entirely known. Here, a combination of a chemical, virus‐induced gene‐silencing‐based genetics approach, and transgenic technology was undertaken to investigate the role of GSH in plant viral resistance in Nicotiana benthamiana. Tobacco mosaic virus (TMV) infection results in increasing the expression of GSH biosynthesis genes NbECS and NbGS, and GSH content. Silencing of NbECS or NbGS accelerated oxidative damage, increased accumulation of reactive oxygen species (ROS), compromised plant resistance to TMV, and suppressed the salicylic acid (SA)‐mediated signalling pathway. Application of GSH or l‐2‐oxothiazolidine‐4‐carboxylic acid (a GSH activator) alleviated oxidative damage, decreased accumulation of ROS, elevated plant local and systemic resistance, enhanced the SA‐mediated signalling pathway, and increased the expression of ROS scavenging‐related genes. However, treatment with buthionine sulfoximine (a GSH inhibitor) accelerated oxidative damage, elevated ROS accumulation, compromised plant systemic resistance, suppressed the SA‐mediated signalling pathway, and reduced the expression of ROS‐regulating genes. Overexpression of NbECS reduced oxidative damage, decreased accumulation of ROS, increased resistance to TMV, activated the SA‐mediated signalling pathway, and increased the expression of the ROS scavenging‐related genes. We present molecular evidence suggesting GSH is essential for both local and systemic resistance of N. benthamiana to TMV through a differential modulation of SA and ROS.<br />Glutathione is required for both local and systemic resistance of Nicotiana benthamiana to tobacco mosaic virus infection through a differential modulation of salicylic acid signalling and reactive oxygen species.
- Subjects :
- salicylic acid
Soil Science
Nicotiana benthamiana
Plant Science
chemistry.chemical_compound
Gene Expression Regulation, Plant
Tobacco
Buthionine sulfoximine
Molecular Biology
Disease Resistance
Plant Diseases
Plant Proteins
reactive oxygen species
chemistry.chemical_classification
Reactive oxygen species
biology
systemic resistance
Activator (genetics)
tobacco mosaic virus
fungi
food and beverages
Original Articles
Glutathione
Biotic stress
biology.organism_classification
Cell biology
chemistry
Original Article
Agronomy and Crop Science
Systemic acquired resistance
Salicylic acid
Subjects
Details
- ISSN :
- 13643703 and 14646722
- Volume :
- 22
- Database :
- OpenAIRE
- Journal :
- Molecular Plant Pathology
- Accession number :
- edsair.doi.dedup.....72f827c2379fd63815c6e18c4bc1f8eb