Back to Search Start Over

Lagrangian stochastic model for the orientation of inertialess spheroidal particles in turbulent flows: an efficient numerical method for CFD approach

Authors :
Lorenzo Campana
Mireille Bossy
Christophe Henry
Stochastic Approaches for Complex Flows and Environment (CALISTO)
Centre de Mise en Forme des Matériaux (CEMEF)
Mines Paris - PSL (École nationale supérieure des mines de Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
ANR-15-IDEX-0001,UCA JEDI,Idex UCA JEDI(2015)
ANR-21-CE30-0040,NETFLEX,Enchevêtrements, nœuds et fragmentation de fibres flexibles dans les fluides turbulents(2021)
Source :
Computers and Fluids, Computers and Fluids, 2023, 257, pp.105870. ⟨10.1016/j.compfluid.2023.105870⟩
Publication Year :
2022
Publisher :
arXiv, 2022.

Abstract

In this work, we propose a model for the orientation of inertialess spheroidal particles suspended in turbulent flows. This model consists in a stochastic version of the Jeffery equation that can be included in a statistical Lagrangian description of particles suspended in a flow. It is compatible and coherent with turbulence models that are widely used in CFD codes for the simulation of the flow field in practical large-scale applications. In this context, we propose and analyze a numerical scheme based on a splitting scheme algorithm that decouples the orientation dynamics into its main contributions: stretching and rotation. We detail its implementation in an open-source CFD software. We analyze the weak and strong convergence of both the global scheme and of each sub-part. Subsequently, the splitting technique yields to a highly efficient hybrid algorithm coupling pure probabilistic and deterministic numerical schemes. Various numerical experiments were implemented and the results were compared with analytical predictions of the model to assess the algorithm efficiency and accuracy.

Details

ISSN :
00457930
Database :
OpenAIRE
Journal :
Computers and Fluids, Computers and Fluids, 2023, 257, pp.105870. ⟨10.1016/j.compfluid.2023.105870⟩
Accession number :
edsair.doi.dedup.....72d62dfa2a4d2a587ca28447e20dd473
Full Text :
https://doi.org/10.48550/arxiv.2211.10211