Back to Search Start Over

Cryptic serpulid-microbialite bioconstructions in the Kakoskali submarine cave (Cyprus, Eastern Mediterranean)

Authors :
Antonis Petrou
Adriano Guido
Adelaide Mastandrea
Franco Russo
Carlos Jiménez
Louis Hadjioannou
Rossana Sanfilippo
Antonietta Rosso
Katerina Achilleos
Source :
Facies. 63
Publication Year :
2017
Publisher :
Springer Science and Business Media LLC, 2017.

Abstract

The biostalactites from the Kakoskali cave in Cyprus represent a new example of the complex biotic relationships between skeletal organisms and microbial communities in building bioconstructions of cryptic marine environments. Biostalactites are mainly constituted of polychaetes of the family Serpulidae and, to a lesser degree, foraminifers and bryozoans. Within the skeletal framework of these organisms, two types of microcrystalline calcite (micrite) have been recognized: autochthonous and detrital micrite. The autochthonous fraction is syndepositionally lithified and occurs as clotted peloidal and, subordinately, aphanitic (structureless) textures, suggesting the presence of heterotrophic microbial activities thriving on decaying metazoan organic matter. This fraction is limited to the protected portions of the bioconstructions, especially in the inner and lower parts. The presence of iron and manganesiferous oxidizing bacteria is suggested by the deposition of ferromanganesiferous crusts and Frutexites-like structures. These microbial-induced biomineralizations are the main evidence of carbonatogenetic and Fe–Mn, autotrophic and chemoheterotrophic, bacterial activities. The Kakoskali cave is frequently visited by divers who, during their immersions, resuspend the fine bottom sediment, which later covers the surface of the bioconstructions, disturbing the delicate equilibrium of the biotic association. This perturbation, which is also caused by strong waves and currents, during winter months, reflects on the bioconstruction morphologies, community composition, and colonization pattern. Bioconstructions exhibit an upper smooth surface, produced by few taxa (e.g., polychaetes, foraminifers), hosting a low number of living individuals, and a lower comparably rough surface, colonized by a more abundant community showing a higher species richness. The ratio surface roughness/smoothness is related to micrite sediment type: the upper part is mainly characterized by loose detrital micrite while the internal and lower parts by syndepositional cemented autochthonous micrite.

Details

ISSN :
16124820 and 01729179
Volume :
63
Database :
OpenAIRE
Journal :
Facies
Accession number :
edsair.doi.dedup.....72c493bcac7da8466d91fa921943b183
Full Text :
https://doi.org/10.1007/s10347-017-0502-3