Back to Search
Start Over
Binary mapping of cortical spike trains in short-term memory
- Source :
- Journal of neurophysiology. 77(4)
- Publication Year :
- 1997
-
Abstract
- Bodner, Mark, Yong-Di Zhou, and Joaquı́n M. Fuster. Binary mapping of cortical spike trains in short-term memory. J. Neurophysiol. 77: 2219–2222, 1997. Microelectrode studies in monkeys performing short-term memory tasks show the sustained elevated discharge of cortical neurons during the retention of recalled sensory information. Cortical cells that are part of memory networks are assumed to receive numerous inputs of excitatory as well as inhibitory nature and local as well as remote. Thus it is reasonable to postulate that the temporal and spatial summation of diverse inputs on any cell in an activated network will result in temporally discrete groups of spikes in its firing. The activation of a network in active memory supposedly increases the magnitude and diversity of those inputs and thus increases the discontinuities and frequency fluctuations in the firing of cells in the network. In this study we use a new method of analysis that allows the quantification of firing discontinuities in a spike train. We apply it to parietal cells recorded from monkeys during the performance of a tactile short-term memory task. In our method, time is divided into bins of equal duration and the measure of discontinuities is the total count of the number of transitions between consecutive time bins with and without spikes. The results of the analysis show that in many of the cells studied, discontinuities (transitions between spiking and nonspiking) reflect memory-related activity obscured in the measures of raw spike frequency over a wide range of frequencies. These cells show more firing transitions in active short-term memory than in baseline (intertrial) conditions.
- Subjects :
- Neurons
Communication
Brain Mapping
Physiology
business.industry
Computer science
General Neuroscience
Short-term memory
Binary number
Retention, Psychology
Sensory system
Haplorhini
Classification of discontinuities
Summation
Inhibitory postsynaptic potential
Memory, Short-Term
Parietal Lobe
Excitatory postsynaptic potential
Animals
Spike (software development)
business
Neuroscience
Evoked Potentials
Mathematical Computing
Subjects
Details
- ISSN :
- 00223077
- Volume :
- 77
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- Journal of neurophysiology
- Accession number :
- edsair.doi.dedup.....72aad94ab47431083573320f886bf22b