Back to Search Start Over

Exploring the hidden interior of the Earth with directional neutrino measurements

Authors :
Stephen T. Dye
Michael Leyton
Jocelyn Monroe
Source :
Nature Communications, Vol 8, Iss 1, Pp 1-11 (2017), Nature Communications
Publication Year :
2017
Publisher :
Nature Portfolio, 2017.

Abstract

Roughly 40% of the Earth’s total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here we present a method for measuring previously unresolved components of Earth’s radiogenic heating using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors. We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.<br />The detection of Earth’s anti neutrino emission from potassium and the mantle remain elusive. Here the authors propose a method for measuring potassium and mantle geo-neutrinos by detecting their elastic scattering on electrons with direction-sensitive detectors.

Details

Language :
English
ISSN :
20411723
Volume :
8
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....72a2616e7f1a70668a4c13d08758bb4d