Back to Search
Start Over
Clustering Linear Models Using Wasserstein Distance
- Source :
- Data Analysis and Classification ISBN: 9783642037382
- Publication Year :
- 2009
- Publisher :
- Springer Berlin Heidelberg, 2009.
-
Abstract
- This paper deals with the clustering of complex data. The input elements to be clustered are linear models estimated on samples arising from several sub-populations (typologies of individuals). We review the main approaches to the computation of metrics between linear models. We propose to use a Wasserstein based metric for the first time in this field. We show the properties of the proposed metric and an application to real data using a dynamic clustering algorithm.
Details
- ISBN :
- 978-3-642-03738-2
- ISBNs :
- 9783642037382
- Database :
- OpenAIRE
- Journal :
- Data Analysis and Classification ISBN: 9783642037382
- Accession number :
- edsair.doi.dedup.....729c5669e768f24febccef1d55df18a8
- Full Text :
- https://doi.org/10.1007/978-3-642-03739-9_5