Back to Search Start Over

Clustering Linear Models Using Wasserstein Distance

Authors :
Antonio Irpino
Rosanna Verde
PALUMBO F., LAURO C.N., GREENACRE M.J.
Francesco Palumbo
Carlo Natale Lauro
Michael J. Greenacre
Irpino, Antonio
Verde, Rosanna
AA.VV.
Source :
Data Analysis and Classification ISBN: 9783642037382
Publication Year :
2009
Publisher :
Springer Berlin Heidelberg, 2009.

Abstract

This paper deals with the clustering of complex data. The input elements to be clustered are linear models estimated on samples arising from several sub-populations (typologies of individuals). We review the main approaches to the computation of metrics between linear models. We propose to use a Wasserstein based metric for the first time in this field. We show the properties of the proposed metric and an application to real data using a dynamic clustering algorithm.

Details

ISBN :
978-3-642-03738-2
ISBNs :
9783642037382
Database :
OpenAIRE
Journal :
Data Analysis and Classification ISBN: 9783642037382
Accession number :
edsair.doi.dedup.....729c5669e768f24febccef1d55df18a8
Full Text :
https://doi.org/10.1007/978-3-642-03739-9_5