Back to Search Start Over

Controlled fabrication of a biological vascular substitute

Authors :
Anthony Atala
James J. Yoo
Richard Czerw
Joel D. Stitzel
Makoto Komura
Mark Van Dyke
Shay Soker
Joel L. Berry
Jie Liu
Sang Jin Lee
Grace Lim
Source :
Biomaterials. 27:1088-1094
Publication Year :
2006
Publisher :
Elsevier BV, 2006.

Abstract

Autologous and synthetic vessel grafts have been used as a vascular substitute for cardiovascular bypass procedures. However, these materials are limited by the availability of appropriate caliber autologous vessels, increased susceptibility to thrombosis and intimal hyperplasia following surgery. Electrospinning technology offers the potential for controlling composition, structure and mechanical properties of biomaterials. Vascular graft scaffolds have been fabricated using electrospun polymer blends of Type I collagen, elastin from ligamentum nuchae, and poly (d,l-lactide-co-glycolide). This study demonstrates improved electrospinning characteristics versus previous studies by increasing polymer concentration and adding PLGA to the polymer blend. Additionally, new in vitro biocompatibility and mechanical testing data is presented. The scaffolds possess tissue composition and mechanical properties similar to native vessels. The electrospun vessel matrix is biocompatible and does not elicit local or systemic toxic effects when implanted in vivo. This study demonstrates the promise of electrospinning as a fabrication process for a functional vascular graft for clinical use.

Details

ISSN :
01429612
Volume :
27
Database :
OpenAIRE
Journal :
Biomaterials
Accession number :
edsair.doi.dedup.....728e0838181cef7c416fb4bee4b65b4d
Full Text :
https://doi.org/10.1016/j.biomaterials.2005.07.048