Back to Search Start Over

Prediction of 7‐year's conversion from subjective cognitive decline to mild cognitive impairment

Authors :
Xia Li
Tao Wang
Junhao Wen
Jinghua Wang
Han Zhang
Guanjun Li
Ling Yue
Shifu Xiao
Dinggang Shen
Dan Hu
Wei Li
Lin Sun
Ye Wu
Shanghai Mental Health Center
Biomedical Research Imaging Center [North Carolina] (BRIC)
University of North Carolina [Chapel Hill] (UNC)
University of North Carolina System (UNC)-University of North Carolina System (UNC)
University of North Carolina System (UNC)
Algorithms, models and methods for images and signals of the human brain (ARAMIS)
Sorbonne Université (SU)-Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM)
Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP]
Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP]
Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
This work was supported by the China Ministry of Science and Technology (2009BAI77B03), Shanghai Mental Health Center (CRC2017ZD02, 2018-FX-05, 2020zd01), Shanghai Clinical Research Center for Mental Health (SCRC-MH, 19MC1911100), the National Natural Science Foundation of China (81830059), Shanghai Jiaotong University School of Medicine (CBXJ201815, YG2016MS38), and Shanghai Municipal Human Resources Development Program(2017BR054).
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau = Paris Brain Institute (ICM)
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP]
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP]
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Gestionnaire, HAL Sorbonne Université 5
Source :
Human Brain Mapping, Human Brain Mapping, Wiley, 2020, ⟨10.1002/hbm.25216⟩, Human Brain Mapping, 2020, ⟨10.1002/hbm.25216⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Subjective cognitive decline (SCD) is a high‐risk yet less understood status before developing Alzheimer's disease (AD). This work included 76 SCD individuals with two (baseline and 7 years later) neuropsychological evaluations and a baseline T1‐weighted structural MRI. A machine learning‐based model was trained based on 198 baseline neuroimaging (morphometric) features and a battery of 25 clinical measurements to discriminate 24 progressive SCDs who converted to mild cognitive impairment (MCI) at follow‐up from 52 stable SCDs. The SCD progression was satisfactorily predicted with the combined features. A history of stroke, a low education level, a low baseline MoCA score, a shrunk left amygdala, and enlarged white matter at the banks of the right superior temporal sulcus were found to favor the progression. This is to date the largest retrospective study of SCD‐to‐MCI conversion with the longest follow‐up, suggesting predictable far‐future cognitive decline for the risky populations with baseline measures only. These findings provide valuable knowledge to the future neuropathological studies of AD in its prodromal phase.<br />In this article, we used a community‐based cohort of subjective cognitive decline (SCD) elderly subjects with 7‐year follow‐up and retrospectively identified individual SCD who had converted to mild cognitive impairment (MCI) during the follow‐up. After identifying progressive SCDs from stable SCDs, we constructed a machine learning‐based prediction model that successfully identified most progressive SCD individuals based on 198 morphometric features derived from structural MRI and 25 comprehensive clinical features. The striking finding is that as few as five neuroimaging and clinical features derived from baseline were able to predict cognitive impairment occurred 7 years later.

Details

Language :
English
ISSN :
10659471 and 10970193
Database :
OpenAIRE
Journal :
Human Brain Mapping, Human Brain Mapping, Wiley, 2020, ⟨10.1002/hbm.25216⟩, Human Brain Mapping, 2020, ⟨10.1002/hbm.25216⟩
Accession number :
edsair.doi.dedup.....7258e93ece9e89be11a711fb6357a8f4