Back to Search Start Over

Genetic analysis of the septal peptidoglycan synthase FtsWI complex supports a conserved activation mechanism for SEDS-bPBP complexes

Authors :
Joe Lutkenhaus
Kyung-Tae Park
Rui Zhan
Shishen Du
Ying Li
Han Gong
Shushan Ouyang
Source :
PLoS Genetics, Vol 17, Iss 4, p e1009366 (2021), PLoS Genetics
Publication Year :
2021
Publisher :
Public Library of Science (PLoS), 2021.

Abstract

SEDS family peptidoglycan (PG) glycosyltransferases, RodA and FtsW, require their cognate transpeptidases PBP2 and FtsI (class B penicillin binding proteins) to synthesize PG along the cell cylinder and at the septum, respectively. The activities of these SEDS-bPBPs complexes are tightly regulated to ensure proper cell elongation and division. In Escherichia coli FtsN switches FtsA and FtsQLB to the active forms that synergize to stimulate FtsWI, but the exact mechanism is not well understood. Previously, we isolated an activation mutation in ftsW (M269I) that allows cell division with reduced FtsN function. To try to understand the basis for activation we isolated additional substitutions at this position and found that only the original substitution produced an active mutant whereas drastic changes resulted in an inactive mutant. In another approach we isolated suppressors of an inactive FtsL mutant and obtained FtsWE289G and FtsIK211I and found they bypassed FtsN. Epistatic analysis of these mutations and others confirmed that the FtsN-triggered activation signal goes from FtsQLB to FtsI to FtsW. Mapping these mutations, as well as others affecting the activity of FtsWI, on the RodA-PBP2 structure revealed they are located at the interaction interface between the extracellular loop 4 (ECL4) of FtsW and the pedestal domain of FtsI (PBP3). This supports a model in which the interaction between the ECL4 of SEDS proteins and the pedestal domain of their cognate bPBPs plays a critical role in the activation mechanism.<br />Author summary Bacterial cell division requires the synthesis of septal peptidoglycan by the widely conserved SEDS-bPBP protein complex FtsWI, but how the complex is activated during cell division is still poorly understood. Previous studies suggested that FtsN initiates a signaling cascade in the periplasm to activate FtsWI. Here we isolated and characterized activated FtsW and FtsI mutants and confirmed that the signaling cascade for FtsW activation goes from FtsN to FtsQLB to FtsI and then to FtsW. The residues corresponding to mutations affecting FtsWI activation are clustered to a small region of the interaction interface between the pedestal domain of FtsI and the extracellular loop 4 of FtsW, suggesting that this interaction mediates activation of FtsW. This is strikingly similar to the proposed activation mechanism for the RodA-PBP2 complex, another SEDS-bPBP complex required for cell elongation. Thus, the two homologous SEDS-bPBP complexes are activated similarly by completely unrelated activators that modulate the interaction interface between the SEDS proteins and the bPBPs.

Details

ISSN :
15537404
Volume :
17
Database :
OpenAIRE
Journal :
PLOS Genetics
Accession number :
edsair.doi.dedup.....722c2909914653771216c0daba3f22f7