Back to Search
Start Over
On the local Type I conditions for the 3D Euler equations
- Publication Year :
- 2017
-
Abstract
- We prove local non blow-up theorems for the 3D incompressible Euler equations under local Type I conditions. More specifically, for a classical solution $v\in L^\infty (-1,0; L^2 ( B(x_0,r)))\cap L^\infty_{\rm loc} (-1,0; W^{1, \infty} (B(x_0, r)))$ of the 3D Euler equations, where $B(x_0,r)$ is the ball with radius $r$ and the center at $x_0$, if the limiting values of certain scale invariant quantities for a solution $v(\cdot, t)$ as $t\to 0$ are small enough, then $ \nabla v(\cdot,t) $ does not blow-up at $t=0$ in $B(x_0, r)$.<br />22 pages
- Subjects :
- Physics
Local type
Mechanical Engineering
010102 general mathematics
Center (category theory)
Mathematics::Analysis of PDEs
Radius
Scale invariance
01 natural sciences
Euler equations
010101 applied mathematics
symbols.namesake
Mathematics (miscellaneous)
Mathematics - Analysis of PDEs
FOS: Mathematics
symbols
Incompressible euler equations
Nabla symbol
Ball (mathematics)
35Q30, 76D03, 76D05
0101 mathematics
Analysis
Analysis of PDEs (math.AP)
Mathematical physics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....720b4752670d386578ff05af4e11f6e0