Back to Search Start Over

A novel fluorescent hydroxyapatite based on iron quantum cluster template to enhance osteogenic differentiation

Authors :
Alireza Naderi Sohi
Veronika Hruschka
Susanne Wolbank
Darja Marolt Presen
Hossein Naderi-Manesh
Zahra Vaezi
Somayeh Khanmohammadi
Naimeh Hashemi
Heinz Redl
Saeed Masoumi
Source :
Materials scienceengineering. C, Materials for biological applications. 111
Publication Year :
2019

Abstract

Template-mediated self-assembly synthesis has produced a diverse range of biomimetic materials with unique physicochemical properties. Here, we fabricated novel fluorescent three-dimensional (3-D) hydroxyapatite (HAP) nanorod-assembled microspheres using iron quantum cluster (FeQC) as a hybrid template, containing three organic components: hemoglobin chains, piperidine, and iron clusters. The material characterization indicated that the synthesized HAP possessed a uniform rod-like morphology, ordered 3-D architecture, high crystallinity, self-activated fluorescence, and remarkable photostability. Our study proposed that this FeQC template is a promising regulating agent to fabricate fluorescent self-assembled HAP microspheres with a controlled morphology. The effect of HAP on stem cell fate and their osteogenic differentiation was investigated by culturing human bone marrow-derived mesenchymal stromal/stem cells (BMSCs) with HAP microspheres. Significant increases in collagen matrix production and gene expression of osteogenic markers, including osteocalcin (OCN), Runt-related transcription factor 2 (Runx2), bone sialoprotein (BSP) and alkaline phosphatase (ALP), were observed compared to the controls after 21 days of culture. Taken together, our data suggest that synthetic HAP nanorod-assembled microspheres represent a promising new biomaterial which exhibits enhanced fluorescent properties and osteoinductive effects on human BMSCs.

Details

ISSN :
18730191
Volume :
111
Database :
OpenAIRE
Journal :
Materials scienceengineering. C, Materials for biological applications
Accession number :
edsair.doi.dedup.....7207d491f6e9434e0933f504d5320e04