Back to Search Start Over

Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge

Authors :
Sieberts, S.K.
Schaff, J.
Duda, M.
Pataki, B.Á.
Sun, M.
Snyder, P.
Daneault, J.F.
Parisi, F.
Costante, G.
Rubin, U.
Banda, P.
Chae, Y.
Chaibub Neto, E.
Dorsey, E.R.
Aydın, Z.
Chen, A.
Elo, L.L.
Espino, C.
Glaab, E.
Goan, E.
Golabchi, F.N.
Görmez, Y.
Jaakkola, M.K.
Jonnagaddala, J.
Klén, R.
Li, D.
McDaniel, C.
Perrin, D.
Perumal, T.M.
Rad, N.M.
Rainaldi, E.
Sapienza, S.
Schwab, P.
Shokhirev, N.
Venäläinen, M.S.
Vergara-Diaz, G.
Zhang, Y.
Abrami, A.
Adhikary, A.
Agurto, C.
Bhalla, S.
Bilgin, H.
Caggiano, V.
Cheng, J.
Deng, E.
Gan, Q.
Girsa, R.
Han, Z.
Heisig, S.
Huang, K.
Jahandideh, S.
Kopp, W.
Kurz, C.F.
Lichtner, G.
Norel, R.
Raghava, G.P.S.
Sethi, T.
Shawen, N.
Tripathi, V.
Tsai, M.
Wang, T.
Wu, Y.
Zhang, J.
Zhang, X.
Wang, Y.
Guan, Y.
Brunner, D.
Bonato, P.
Mangravite, L.M.
Omberg, L.
AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü
Aydin, Zafer
Fonds National de la Recherche - FnR [sponsor]
Luxembourg Centre for Systems Biomedicine (LCSB): Biomedical Data Science (Glaab Group) [research center]
Source :
NPJ Digital Medicine, npj Digital Medicine, Vol 4, Iss 1, Pp 1-12 (2021), npj Digital Medicine, 4 (1), NPJ Digit. Med. 4:53 (2021)
Publication Year :
2021
Publisher :
Springer Nature, 2021.

Abstract

Consumer wearables and sensors are a rich source of data about patients’ daily disease and symptom burden, particularly in the case of movement disorders like Parkinson’s disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95).<br />npj Digital Medicine, 4 (1)<br />ISSN:2398-6352

Details

Language :
English
ISSN :
23986352
Volume :
4
Issue :
1
Database :
OpenAIRE
Journal :
npj Digital Medicine
Accession number :
edsair.doi.dedup.....71db4b229fda3dcd42bda7d6d2773fdd
Full Text :
https://doi.org/10.1038/s41746-021-00414-7