Back to Search Start Over

Molecular mechanism of abnormally large nonsoftening deformation in a tough hydrogel

Authors :
Wei Hong
Tasuku Nakajima
Ya Nan Ye
Jian Ping Gong
Kunpeng Cui
Chengtao Yu
Xueyu Li
Dominique Hourdet
Takayuki Kurokawa
Hokkaido University of Science
Southern University of Science and Technology [Shenzhen] (SUSTech)
Sciences et Ingénierie de la Matière Molle (UMR 7615) (SIMM)
Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Hokkaido University [Sapporo, Japan]
Source :
Proceedings of the National Academy of Sciences of the United States of America, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2021, 118 (14), pp.e2014694118. ⟨10.1073/pnas.2014694118⟩, Proc Natl Acad Sci U S A
Publication Year :
2021
Publisher :
National Academy of Sciences., 2021.

Abstract

International audience; Tough soft materials usually show strain softening and inelastic deformation. Here, we study the molecular mechanism of abnormally large nonsoftening, quasi-linear but inelastic deformation in tough hydrogels made of hyperconnective physical network and linear polymers as molecular glues to the network. The interplay of hyperconnectivity of network and effective load transfer by molecular glues prevents stress concentration, which is revealed by an affine deformation of the network to the bulk deformation up to sample failure. The suppression of local stress concentration and strain amplification plays a key role in avoiding necking or strain softening and endows the gels with a unique large nonsoftening, quasi-linear but inelastic deformation.

Details

Language :
English
ISSN :
00278424 and 10916490
Volume :
118
Issue :
14
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences of the United States of America (PNAS)
Accession number :
edsair.doi.dedup.....71c90ef5d7e346403d067059c38b14df