Back to Search Start Over

A Memetic Approach for the Max-Cut Problem

Authors :
Jin-Kao Hao
Qinghua Wu
Institute of Computing Technology [Beijing] (ICT)
Chinese Academy of Sciences [Changchun Branch] (CAS)
Laboratoire d'Etudes et de Recherche en Informatique d'Angers (LERIA)
Université d'Angers (UA)
Source :
Lecture Notes in Computer Science ISBN: 9783642329630, PPSN (2), 12th International Conference, PPSN 12, 12th International Conference, PPSN 12, 2012, Taormine, Italy. pp.297-306, ⟨10.1007/978-3-642-32964-7_30⟩
Publication Year :
2012
Publisher :
Springer Berlin Heidelberg, 2012.

Abstract

Date du colloque: 09/2012; International audience; The max-cut problem is to partition the vertices of a weighted graph G = (V,E) into two subsets such that the weight sum of the edges crossing the two subsets is maximized. This paper presents a memetic max-cut algorithm (MACUT) that relies on a dedicated multi-parent crossover operator and a perturbation-based tabu search procedure. Experiments on 30 G-set benchmark instances show that MACUT competes favorably with 6 state-of-the-art max-cut algorithms, and for 10 instances improves on the best known results ever reported in the literature.

Details

ISBN :
978-3-642-32963-0
ISBNs :
9783642329630
Database :
OpenAIRE
Journal :
Lecture Notes in Computer Science ISBN: 9783642329630, PPSN (2), 12th International Conference, PPSN 12, 12th International Conference, PPSN 12, 2012, Taormine, Italy. pp.297-306, ⟨10.1007/978-3-642-32964-7_30⟩
Accession number :
edsair.doi.dedup.....71c197c8f4275e37f96739c2638da5d4