Back to Search
Start Over
MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion
- Source :
- Acta Diabetologica. 52:523-530
- Publication Year :
- 2014
- Publisher :
- Springer Science and Business Media LLC, 2014.
-
Abstract
- MicroRNAs are a class of negative regulators of gene expression, which have been shown to be involved in the development of endocrine pancreas and in the regulation of insulin secretion. Since type 2 diabetes (T2D) is characterized by beta cell dysfunction, we aimed at evaluating expression levels of miR-124a and miR-375, both involved in the control of beta cell function, in human pancreatic islets obtained from T2D and from age-matched non-diabetic organ donors. We analyzed miR-124a and miR-375 expression by real-time qRT-PCR in human pancreatic islets and evaluated the potential role of miR-124a by overexpressing or silencing such miRNA in MIN6 pseudoislets. We identified a major miR-124a hyperexpression in T2D human pancreatic islets with no differential expression of miR-375. Of note, miR-124a overexpression in MIN6 pseudoislets resulted in an impaired glucose-induced insulin secretion. In addition, miR-124a silencing in MIN6 pseudoislets resulted in increased expression of predicted target genes (Mtpn, Foxa2, Flot2, Akt3, Sirt1 and NeuroD1) involved in beta cell function. For Mtpn and Foxa2, we further demonstrated the actual binding of miR-124a to their 3UTR sequences by luciferase assay. We uncovered a major hyperexpression of miR-124a in T2D islets, whose silencing resulted in increased expression of target genes of major importance for beta cell function and whose overexpression impaired glucose-stimulated insulin secretion, leading to the hypothesis that an altered miR-124a expression may contribute to beta cell dysfunction in type 2 diabetes.
- Subjects :
- Male
endocrine system
medicine.medical_specialty
Endocrinology, Diabetes and Metabolism
Pancreatic islets
Down-Regulation
Biology
Cell Line
Islets of Langerhans
Mice
Endocrinology
Downregulation and upregulation
Insulin-Secreting Cells
Internal medicine
Insulin Secretion
Gene expression
microRNA
Internal Medicine
medicine
Animals
Humans
Insulin
Gene silencing
Insulin secretion
MicroRNAs
Type 2 diabetes
Aged
Aged, 80 and over
General Medicine
Middle Aged
Up-Regulation
Cell biology
Insulin oscillation
Glucose
medicine.anatomical_structure
Diabetes Mellitus, Type 2
NEUROD1
Female
Pancreas
Subjects
Details
- ISSN :
- 14325233 and 09405429
- Volume :
- 52
- Database :
- OpenAIRE
- Journal :
- Acta Diabetologica
- Accession number :
- edsair.doi.dedup.....716de6b7a74d07188f6bab0cea822836