Back to Search Start Over

Principal spectrum point and application to nonlocal dispersal operators

Authors :
Djidjou-Demasse, Ramsès
Kandé, Mocatar
Seydi, Ousmane
Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC)
Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)
Université Cheikh Anta Diop [Dakar, Sénégal] (UCAD)
Ecole polytechnique de Thiès
Ecole Polytechnique de Thiès
Publication Year :
2022

Abstract

We propose a general framework for a sufficient condition of the existence of the principal eigenpair to the eigenvalue problem L[u]+H[u] = λu, (λ, u) ∈ R×X, where L : X → X is a positive bounded linear operator and H : D(H) ⊂ X → X a closed, possibly unbounded linear operator in the Banach space (X, ∥ • ∥). Criteria for (i) the existence of a principal eigenpair, (ii) Asynchronous Exponential Growth (AEG) and, (iii) continuity result of the spectral bound are given, without necessarily specifying forms of operators for the above problem. The criteria are then applied to generalize some results in the existing literature in context of nonlocal dispersal operators. Our results are applied to a model of a chemostat and a model of a spatial evolution of a man-environment disease.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....713b91295c3010c331259a8c2f88dc97
Full Text :
https://doi.org/10.13140/rg.2.2.28655.10405