Back to Search Start Over

The WIRCAM Deep Infrared Cluster Survey I: Groups and Clusters at z > 1.1

Authors :
Masayuki Tanaka
Kirpal Nandra
O. Le Fèvre
Patrick Petitjean
Yannick Mellier
Raghunathan Srianand
Alexis Finoguenov
C. S. Stalin
Olivier Ilbert
P. Hudelot
H. J. McCracken
Chris J. Willott
E. Daddi
R. M. Bielby
J. P. Kneib
Publication Year :
2010

Abstract

We use CFHTLS deep optical data, WIRCam Deep Survey (WIRDS) NIR data and XMM data to identify z>1.1 clusters in the CFHTLS D1 and D4 fields. Counterparts to such clusters can not be identified without deep NIR data and as such the total of =1deg2 of J , H & Ks band imaging provided by WIRDS is an indispensable tool in such work. Using public XMM X-ray data, we identify extended X-ray sources in the two fields. The resulting catalogue of extended X-ray sources was analyzed for optical/NIR counterparts, using a red-sequence algorithm. Redshifts of candidate groups and clusters were estimated using the median photometric redshifts of detected counterparts and where available spectroscopic data. Additionally, we surveyed X-ray point sources for potential group systems at the limit of our detection range in the X-ray data. A catalogue of z > 1.1 cluster candidates in the two fields has been compiled and cluster masses, radii and temperatures have been estimated using the scaling relations. The catalogue consists of 15 z > 1.1 candidates. Three of the detections are previously published extended X-ray sources. Of note is JKSC 041 for which we identify possible structures at z = 0.8, z = 0.96, z = 1.13 and z = 1.49. We also make an independent detection of the massive cluster, XMMXCS J2215.9-1738. We use the z > 1.1 catalogue to compare the cluster number counts in these fields with models based on WMAP 7-year cosmology and find that the models slightly over-predict the observations, whilst at z>1.5 we do not detect any clusters. We note that cluster number counts at z > 1.1 are highly sensitive to the cosmological model, however a significant reduction in present statistical (due to available survey area) and systematic (due to cluster scaling relations) uncertainties is required in order to confidently constrain cosmological parameters using cluster number counts at high redshift.<br />Comment: 22 pages, 22 figures, Accepted 4 August 2010

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....711f87aa3e57611f2d11f152f828d1af