Back to Search Start Over

A modified rock physics model for analysis of seismic signatures of low gas-saturated rocks

Authors :
Jacques Blanco
Daniel Broseta
Perveiz Khalid
Dan Vladimir Nichita
Laboratoire des Fluides Complexes et leurs Réservoirs (LFCR)
Centre National de la Recherche Scientifique (CNRS)-Université de Pau et des Pays de l'Adour (UPPA)-TOTAL FINA ELF
University of the Punjab
Modélisation et Imagerie en Géosciences - Pau (MIGP)
Institut national des sciences de l'Univers (INSU - CNRS)-TotalFinaElf-Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)
TOTAL FINA ELF-Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)
Departamento de Microbiología
Universidad de Santiago de Compostela [Spain] (USC)
Centre National de la Recherche Scientifique (CNRS)-Université de Pau et des Pays de l'Adour (UPPA)-TotalFinaElf-Institut national des sciences de l'Univers (INSU - CNRS)
Source :
Arabian Journal of Geosciences, Arabian Journal of Geosciences, Springer, 2014, 7 (8), pp.3281-3295. ⟨10.1007/s12517-013-1024-0⟩, Arabian Journal of Geosciences, Springer, 2013, pp.1-15. ⟨10.1007/s12517-013-1024-0⟩
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

International audience; In seismic applications, the bulk modulus of porous media saturated with liquid and gas phases is often estimated using Gassmann's fluid substitution formula, in which the effective bulk modulus of the two-phase fluid is the Reuss average of the gas and liquid bulk moduli. This averaging procedure, referred to as Wood's approximation, holds if the liquid and gas phases are homogeneously distributed within the pore space down to sizes well below the seismic wavelength and if the phase transfer processes between liquid and gas domains induced by the pressure variations of the seismic wave are negligible over the timescale of the wave period. Using existing theoretical results and low-frequency acoustic measurements in bubbly liquids, we argue that the latter assumption of "frozen" phases, valid for large enough frequencies, is likely to fail in the seismic frequency range where lower effective bulk modulus and velocity, together with dispersion and attenuation effects, are expected. We provide a simple method, which extends to reservoir fluids a classical result by Landau and Lifshitz valid for pure fluids, to compute the effective bulk modulus of thermodynamically equilibrated liquid and gas phases. For low gas saturation, this modulus is significantly lower than its Wood's counterpart, especially at the crossing of bubble point conditions. A seismic reflector associated to a phase transition between a monophasic and a two-phase fluid thus will appear. We discuss the consequences of these results for various seismic applications including fizz water discrimination and hydrocarbon reservoir depletion and CO2 geological storage monitoring. © 2013 Saudi Society for Geosciences.

Details

Language :
English
Database :
OpenAIRE
Journal :
Arabian Journal of Geosciences, Arabian Journal of Geosciences, Springer, 2014, 7 (8), pp.3281-3295. ⟨10.1007/s12517-013-1024-0⟩, Arabian Journal of Geosciences, Springer, 2013, pp.1-15. ⟨10.1007/s12517-013-1024-0⟩
Accession number :
edsair.doi.dedup.....71062a8e67d7135b083c8fce343dfaf2
Full Text :
https://doi.org/10.1007/s12517-013-1024-0⟩