Back to Search
Start Over
A BMP7 variant inhibits the tumorigenic potential of glioblastoma stem-like cells
- Publication Year :
- 2012
-
Abstract
- Glioblastoma multiforme (GBM) is among the most aggressive tumor types and is essentially an incurable malignancy characterized by resistance to chemo-, radio-, and immunotherapy. GBM is maintained by a hierarchical cell organization that includes stem-like, precursor, and differentiated cells. Recurrence and maintenance of the tumor is attributed to a small population of undifferentiated tumor-initiating cells, defined as glioblastoma stem-like cells (GSLCs). This cellular hierarchy offers a potential treatment to induce differentiation of GSLCs away from tumor initiation to a more benign phenotype or to a cell type more amenable to standard therapies. Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth and differentiation. In vitro, a BMP7 variant (BMP7v) decreased primary human GSLC proliferation, endothelial cord formation, and stem cell marker expression while enhancing neuronal and astrocyte differentiation marker expression. In subcutaneous and orthotopic GSLC xenografts, which closely reproduce the human disease, BMP7v decreased tumor growth and stem cell marker expression, while enhancing astrocyte and neuronal differentiation compared with control mice. In addition, BMP7v reduced brain invasion, angiogenesis, and associated mortality in the orthotopic model. Inducing differentiation of GSLCs and inhibiting angiogenesis with BMP7v provides a potentially powerful and novel approach to the treatment of GBM.
- Subjects :
- cancer stem cells
Cell type
Pathology
medicine.medical_specialty
Angiogenesis
Cellular differentiation
Bone Morphogenetic Protein 7
Transplantation, Heterologous
Settore MED/27 - NEUROCHIRURGIA
Population
Biology
Stem cell marker
Cell Line
Astrocyte differentiation
Mice
Cancer stem cell
Settore MED/04 - PATOLOGIA GENERALE
Cell Line, Tumor
bone morphogenetic protein
medicine
Glioblastoma
Animals
Brain Neoplasms
Cell Differentiation
Cell Proliferation
Cytokines
HCT116 Cells
Humans
Neoplastic Stem Cells
Neovascularization, Pathologic
Molecular Biology
Cell Biology
education
Neovascularization
Pathologic
Original Paper
education.field_of_study
Transplantation
Heterologous
Tumor
medicine.anatomical_structure
Cancer research
Astrocyte
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....70f34904c98a92163ae737a5942b8e4b