Back to Search
Start Over
Common mechanisms of drug interactions with sodium and T-type calcium channels
- Source :
- Molecular pharmacology. 82(3)
- Publication Year :
- 2012
-
Abstract
- Voltage-gated sodium (Na(v)) and calcium (Ca(v)) channels play important roles in physiological processes, including neuronal and cardiac pacemaker activity, vascular smooth muscle contraction, and nociception. They are thought to share a common ancestry, and, in particular, T-type calcium (T-type) channels share structural similarities with Na(v) channels, both with regard to membrane topology and with regard to gating kinetics, including rapid inactivation. We thus reasoned that certain drugs acting on Na(v) channels may also modulate the activities of T-type channels. Here we show that the specific Na(v)1.8 blocker 5-(4-chlorophenyl-N-(3,5-dimethoxyphenyl)furan-2-carboxamide (A803467) tonically blocks T-type channels in the low micromolar range. Similarly to Na(v)1.8, this compound causes a significant hyperpolarizing shift in the voltage dependence of inactivation and seems to promote a slow inactivation-like phenotype. We further hypothesized that the structural similarity between T-type and Na(v) channels may extend to structurally similar drug-binding sites. Sequence alignment revealed several highly conserved regions between T-type and Na(v) channels that corresponded to drug-binding sites known to alter voltage-dependent gating kinetics. Mutation of amino acid residues in this regions within human Ca(v)3.2 T-type channels altered A803467 blocking affinity severalfold, suggesting that these sites may be exploited for the design of mixed T-type and Na(v) channel blockers that could potentially act synergistically to normalize aberrant neuronal activity.
- Subjects :
- Sodium
Molecular Sequence Data
chemistry.chemical_element
Calcium
Pharmacology
Sodium Channels
Membrane Potentials
Calcium Channels, T-Type
Premovement neuronal activity
Animals
Humans
Channel blocker
Drug Interactions
Amino Acid Sequence
Furans
Cells, Cultured
Aniline Compounds
Binding Sites
Voltage-dependent calcium channel
Chemistry
T-type calcium channel
Calcium Channel Blockers
Rats
Kinetics
Membrane topology
Biophysics
Molecular Medicine
Vascular smooth muscle contraction
Ion Channel Gating
Subjects
Details
- ISSN :
- 15210111
- Volume :
- 82
- Issue :
- 3
- Database :
- OpenAIRE
- Journal :
- Molecular pharmacology
- Accession number :
- edsair.doi.dedup.....70e45e002b625840ae09687e5fa6d228