Back to Search
Start Over
Disruption of MAGI2-RapGEF2-Rap1 signaling contributes to podocyte dysfunction in congenital nephrotic syndrome caused by mutations in MAGI2
- Source :
- Zhu, B, Cao, A, Li, J, Ashraf, S, Bierzynska, A, Menon, M C, Hou, S, Sawyers, C, Campbell, K N, Saleem, M A, He, J C, Hildebrandt, F, D'Agati, V D & Kaufman, L 2019, ' Disruption of MAGI2-RapGEF2-Rap1 signaling contributes to podocyte dysfunction in congenital nephrotic syndrome caused by mutations in MAGI2 ', Kidney International, vol. 96, no. 3, pp. 642-655 . https://doi.org/10.1016/j.kint.2019.03.016
- Publication Year :
- 2019
- Publisher :
- Elsevier BV, 2019.
-
Abstract
- The essential role of membrane associated guanylate kinase 2 (MAGI2) in podocytes is indicated by the phenotypes of severe glomerulosclerosis of both MAGI2 knockout mice and in patients with congenital nephrotic syndrome (CNS) caused by mutations in MAGI2. Here, we show that MAGI2 forms a complex with the Rap1 guanine nucleotide exchange factor, RapGEF2, and that this complex is lost when expressing MAGI2 CNS variants. Co-expression of RapGEF2 with wild-type MAGI2, but not MAGI2 CNS variants, enhanced activation of the small GTPase Rap1, a central signaling node in podocytes. In mice, podocyte-specific RapGEF2 deletion resulted in spontaneous glomerulosclerosis, with qualitative glomerular features comparable to MAGI2 knockout mice. Knockdown of RapGEF2 or MAGI2 in human podocytes caused similar reductions in levels of Rap1 activation and Rap1-mediated downstream signaling. Furthermore, human podocytes expressing MAGI2 CNS variants show severe abnormalities of cellular morphology and dramatic loss of actin cytoskeletal organization, features completely rescued by pharmacological activation of Rap1 via a non-MAGI2 dependent upstream pathway. Finally, immunostaining of kidney sections from patients with congenital nephrotic syndrome and MAGI2 mutations showed reduced podocyte Rap1-mediated signaling. Thus, MAGI2-RapGEF2-Rap1 signaling is essential for normal podocyte function. Hence, disruption of this pathway is an important cause of the renal phenotype induced by MAGI2 CNS mutations.
- Subjects :
- 0301 basic medicine
endocrine system
Nephrotic Syndrome
podocyte
Telomere-Binding Proteins
030232 urology & nephrology
Nerve Tissue Proteins
Biology
Shelterin Complex
Cell Line
Podocyte
Mice
03 medical and health sciences
0302 clinical medicine
Focal segmental glomerulosclerosis
Cyclic AMP
medicine
Animals
Guanine Nucleotide Exchange Factors
Humans
Congenital nephrotic syndrome
Adaptor Proteins, Signal Transducing
Mice, Knockout
focal segmental glomerulosclerosis
Podocytes
nephrotic syndrome
RAPGEF2
rap1 GTP-Binding Proteins
Glomerulosclerosis
medicine.disease
Cell biology
enzymes and coenzymes (carbohydrates)
030104 developmental biology
medicine.anatomical_structure
Nephrology
Mutation
Knockout mouse
Rap1
Guanylate Kinases
Nephrotic syndrome
Signal Transduction
Subjects
Details
- ISSN :
- 00852538
- Volume :
- 96
- Database :
- OpenAIRE
- Journal :
- Kidney International
- Accession number :
- edsair.doi.dedup.....70d3e6993b651acd6619e8539b2af897
- Full Text :
- https://doi.org/10.1016/j.kint.2019.03.016