Back to Search
Start Over
Observation of a Chemical Softener’s Effects on Stem-Specific Lignocellulosic Brassica napus (Type: Canola) (Cultivar: HYHEAR 3) Fiber Quality
- Source :
- Journal of Textile Science and Technology. :112-130
- Publication Year :
- 2021
- Publisher :
- Scientific Research Publishing, Inc., 2021.
-
Abstract
- Chemical softener (Cepreton UN) is used to soften the cellulosic fiber (cotton) in the textile industries to make clothes better to touch. Therefore, this study investigated the effects of Cepreton UN on both physical (length, aspect ratio, contact angle, and moisture regain) and mechanical (load at break, elongation at break, tensile stress, young’s modulus, and tenacity) properties of the lignocellulosic canola (HYREAR 3) fibers extracted from narrow, medium, and wide stems. ANOVA showed that fiber diameter had strong effects on elongation at break, load at break, tensile stress, young’s modulus, and aspect ratio for all fibers. Corrgram values showed that tensile stress, young’s modulus, and aspect ratio were negatively correlated to fiber diameter whereas load at break and tenacity were mostly positively correlated to fiber diameter. The fibers were treated with 2% and 10% Cepreton UN and compared with control fibers. In most cases, the fiber diameter was decreased in both 2% and 10% treated medium stem fibers. The mean values of elongation at break, load at break, tenacity, and contact angle were decreased for 10% and increased for 2% and the mean values of tensile stress, young’s modulus, and aspect ratio were decreased for 2% and increased for 10% treated medium stem fibers. Moisture regain (%) mostly decreased for 2%, and increased for 10% treated fibers. Low pH (4.5) had an almost similar effect on fibers as 2% Cepreton UN. Overall, 2% Cepreton UN treatment is found to be better than 10% to make canola fibers less stiff and low pH was found to be an alternative softener treatment strategy.
Details
- ISSN :
- 23791551 and 23791543
- Database :
- OpenAIRE
- Journal :
- Journal of Textile Science and Technology
- Accession number :
- edsair.doi.dedup.....70c6d2723058ce4ff6107ed293867a1d
- Full Text :
- https://doi.org/10.4236/jtst.2021.73010