Back to Search Start Over

Overcoming Calibration Problems in Pattern Labeling with Pairwise Ratings: Application to Personality Traits

Authors :
Isabelle Guyon
Nihar B. Shah
Marc Oliu Simon
Baiyu Chen
Víctor Ponce-López
Sergio Escalera
Lawrence Berkeley National Laboratory [Berkeley] (LBNL)
Computer Vision Center (Centre de visio per computador) (CVC)
Universitat Autònoma de Barcelona (UAB)
Machine Learning and Optimisation (TAO)
Laboratoire de Recherche en Informatique (LRI)
Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Chalearn
Department of Electrical Engineering and Computer Sciences (Berkeley EECS)
Gang Hua, Hervé Jégou
Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Paris-Sud - Paris 11 (UP11)-Laboratoire de Recherche en Informatique (LRI)
Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec
Source :
European Conference on Computer Vision (ECCV 2016) Workshops, European Conference on Computer Vision (ECCV 2016) Workshops, Oct 2016, Amsterdam, Netherlands. pp.419-432, ⟨10.1007/978-3-319-49409-8_33⟩, Lecture Notes in Computer Science ISBN: 9783319494081, ECCV Workshops (3)
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

International audience; We address the problem of calibration of workers whose task is to label patterns with continuous variables, which arises for instance in labeling images of videos of humans with continuous traits. Worker bias is particularly difficult to evaluate and correct when many workers contribute just a few labels, a situation arising typically when labeling is crowd-sourced. In the scenario of labeling short videos of people facing a camera with personality traits, we evaluate the feasibility of the pairwise ranking method to alleviate bias problems. Workers are exposed to pairs of videos at a time and must order by preference. The variable levels are reconstructed by fitting a Bradley-Terry-Luce model with maximum likelihood. This method may at first sight, seem prohibitively expensive because for N videos, p=N(N−1)/2 pairs must be potentially processed by workers rather that N videos. However, by performing extensive simulations, we determine an empirical law for the scaling of the number of pairs needed as a function of the number of videos in order to achieve a given accuracy of score reconstruction and show that the pairwise method is affordable. We apply the method to the labeling of a large scale dataset of 10,000 videos used in the ChaLearn Apparent Personality Trait challenge.

Details

Language :
English
ISBN :
978-3-319-49408-1
ISBNs :
9783319494081
Database :
OpenAIRE
Journal :
European Conference on Computer Vision (ECCV 2016) Workshops, European Conference on Computer Vision (ECCV 2016) Workshops, Oct 2016, Amsterdam, Netherlands. pp.419-432, ⟨10.1007/978-3-319-49409-8_33⟩, Lecture Notes in Computer Science ISBN: 9783319494081, ECCV Workshops (3)
Accession number :
edsair.doi.dedup.....70b21cafad2f0916f3e42b777d8f20e4
Full Text :
https://doi.org/10.1007/978-3-319-49409-8_33⟩