Back to Search Start Over

Continuous Relaxation of MAP Inference: A Nonconvex Perspective

Authors :
Nikos Paragios
D. Khue Le-Huu
Organ Modeling through Extraction, Representation and Understanding of Medical Image Content (GALEN)
Ecole Centrale Paris-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Centre de vision numérique (CVN)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Ecole Centrale Paris
Source :
CVPR 2018-IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018-IEEE Conference on Computer Vision and Pattern Recognition, Jun 2018, Salt Lake City, United States. pp.1-19, ⟨10.1109/CVPR.2018.00580⟩, CVPR
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; In this paper, we study a nonconvex continuous relaxation of MAP inference in discrete Markov random fields (MRFs). We show that for arbitrary MRFs, this relaxation is tight, and a discrete stationary point of it can be easily reached by a simple block coordinate descent algorithm. In addition, we study the resolution of this relaxation using popular gradient methods, and further propose a more effective solution using a multilinear decomposition framework based on the alternating direction method of multi-pliers (ADMM). Experiments on many real-world problems demonstrate that the proposed ADMM significantly outper-forms other nonconvex relaxation based methods, and compares favorably with state of the art MRF optimization algorithms in different settings.

Details

Language :
English
Database :
OpenAIRE
Journal :
CVPR 2018-IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018-IEEE Conference on Computer Vision and Pattern Recognition, Jun 2018, Salt Lake City, United States. pp.1-19, ⟨10.1109/CVPR.2018.00580⟩, CVPR
Accession number :
edsair.doi.dedup.....70a6c9242a0c3e5ff8f1e55698c05e16