Back to Search
Start Over
Real projective structures on Riemann surfaces and new hyper-Kähler manifolds
- Source :
- Manuscripta mathematica 171 (2023), Nr. 1-2, Manuscripta mathematica
- Publication Year :
- 2022
- Publisher :
- Berlin, Heidelberg : Springer, 2022.
-
Abstract
- The twistor space of the moduli space of solutions of Hitchin's self-duality equations can be identified with the Deligne-Hitchin moduli space of $\lambda$-connections. We use real projective structures on Riemann surfaces to prove the existence of new components of real holomorphic sections of the Deligne-Hitchin moduli space. Applying the twistorial construction we show the existence of new hyper-K\"ahler manifolds associated to any compact Riemann surface of genus $g\geq2$. These hyper-K\"ahler manifolds can be considered as moduli spaces of (certain) singular solutions of the self-duality equations.<br />Comment: 19 pages, 1 figure; to appear in manuscripta mathematica
- Subjects :
- Mathematics - Differential Geometry
Computer Science::Machine Learning
Mathematics - Algebraic Geometry
Statistics::Machine Learning
Mathematics::Algebraic Geometry
General Mathematics
harmonic maps
Computer Science::Mathematical Software
Mathematics::Differential Geometry
ddc:510
Mathematics::Symplectic Geometry
Computer Science::Digital Libraries
Dewey Decimal Classification::500 | Naturwissenschaften::510 | Mathematik
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Manuscripta mathematica 171 (2023), Nr. 1-2, Manuscripta mathematica
- Accession number :
- edsair.doi.dedup.....70744ec2ccbac8241b17489c160dc9e5
- Full Text :
- https://doi.org/10.15488/13769