Back to Search Start Over

Real projective structures on Riemann surfaces and new hyper-Kähler manifolds

Authors :
Sebastian Heller
Source :
Manuscripta mathematica 171 (2023), Nr. 1-2, Manuscripta mathematica
Publication Year :
2022
Publisher :
Berlin, Heidelberg : Springer, 2022.

Abstract

The twistor space of the moduli space of solutions of Hitchin's self-duality equations can be identified with the Deligne-Hitchin moduli space of $\lambda$-connections. We use real projective structures on Riemann surfaces to prove the existence of new components of real holomorphic sections of the Deligne-Hitchin moduli space. Applying the twistorial construction we show the existence of new hyper-K\"ahler manifolds associated to any compact Riemann surface of genus $g\geq2$. These hyper-K\"ahler manifolds can be considered as moduli spaces of (certain) singular solutions of the self-duality equations.<br />Comment: 19 pages, 1 figure; to appear in manuscripta mathematica

Details

Language :
English
Database :
OpenAIRE
Journal :
Manuscripta mathematica 171 (2023), Nr. 1-2, Manuscripta mathematica
Accession number :
edsair.doi.dedup.....70744ec2ccbac8241b17489c160dc9e5
Full Text :
https://doi.org/10.15488/13769