Back to Search Start Over

Sharp interface limit of the Fisher-KPP equation when initial data have slow exponential decay

Authors :
Matthieu Alfaro
Arnaud Ducrot
Institut de Mathématiques et de Modélisation de Montpellier (I3M)
Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
Tools of automatic control for scientific computing, Models and Methods in Biomathematics (ANUBIS)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Inria Bordeaux - Sud-Ouest
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Source :
Discrete and Continuous Dynamical Systems-Series B, Discrete and Continuous Dynamical Systems-Series B, American Institute of Mathematical Sciences, 2011, pp.16 (2011), 15-29. ⟨10.3934/dcdsb.2011.16.15⟩, Discrete and Continuous Dynamical Systems-Series B, 2011, pp.16 (2011), 15-29. ⟨10.3934/dcdsb.2011.16.15⟩
Publication Year :
2011
Publisher :
American Institute of Mathematical Sciences (AIMS), 2011.

Abstract

International audience; We investigate the singular limit, as $\ep \to 0$, of the Fisher equation $\partial _t u=\ep \Delta u + \ep ^{-1}u(1-u)$ in the whole space. We consider initial data with compact support plus perturbations with {\it slow exponential decay}. We prove that the sharp interface limit moves by a constant speed, which dramatically depends on the tails of the initial data. By performing a fine analysis of both the generation and motion of interface, we provide a new estimate of the thickness of the transition layers.

Details

ISSN :
15313492 and 1553524X
Volume :
16
Database :
OpenAIRE
Journal :
Discrete and Continuous Dynamical Systems - Series B
Accession number :
edsair.doi.dedup.....706e59ca3913f83d4eee1ffc0f1c06b5
Full Text :
https://doi.org/10.3934/dcdsb.2011.16.12