Back to Search Start Over

Free energy and molecular dynamics calculations for the cubic-tetragonal phase transition in zirconia

Authors :
Anthony Paxton
Michael W. Finnis
Stefano Fabris
Source :
Scopus-Elsevier
Publication Year :
2001
Publisher :
arXiv, 2001.

Abstract

The high-temperature cubic-tetragonal phase transition of pure stoichiometric zirconia is studied by molecular dynamics (MD) simulations and within the framework of the Landau theory of phase transformations. The interatomic forces are calculated using an empirical, self-consistent, orthogonal tight-binding (SC-TB) model, which includes atomic polarizabilities up to the quadrupolar level. A first set of standard MD calculations shows that, on increasing temperature, one particular vibrational frequency softens. The temperature evolution of the free energy surfaces around the phase transition is then studied with a second set of calculations. These combine the thermodynamic integration technique with constrained MD simulations. The results seem to support the thesis of a second-order phase transition but with unusual, very anharmonic behaviour above the transition temperature.

Details

Database :
OpenAIRE
Journal :
Scopus-Elsevier
Accession number :
edsair.doi.dedup.....702eb1ac57f35c80c0df77b76de73394
Full Text :
https://doi.org/10.48550/arxiv.cond-mat/0102526