Back to Search Start Over

Genetic Differences in Barley Govern the Responsiveness to N-Acyl Homoserine Lactone

Authors :
Ahmed Elhady
Abhishek Shrestha
Frank Ordon
Shimaa Adss
Gwendolin Wehner
Christoph Böttcher
Holger Heuer
Adam Schikora
Source :
Phytobiomes Journal, Vol 3, Iss 3, Pp 191-202 (2019)
Publication Year :
2019
Publisher :
Scientific Societies, 2019.

Abstract

Enhanced resistance in barley (Hordeum vulgare) against pathogens, such as the powdery mildew-causing fungus Blumeria graminis f. sp. hordei, is of high importance. The beneficial effects of bacterial quorum sensing molecules on resistance and plant growth have been shown in different plant species. Here, we present the effects of the N-3-oxotetradecanoyl-l-homoserine lactone (oxo-C14-HSL) on the resistance of different barley genotypes. Genetically diverse accessions of barley were identified and exposed to the beneficial, oxo-C14-HSL-producing bacterium Ensifer meliloti or the pure N-acyl homoserine lactone (AHL) molecule. Metabolic profiling along with expression analysis of selected genes and physiological assays revealed that the capacity to react varies among different barley genotypes. We demonstrate that upon pretreatment with AHL molecule, AHL-primable barley genotype expresses enhanced resistance against B. graminis f. sp. hordei. We further show that pretreatment with AHL correlates with stronger activation of barley MAP kinases and regulation of defense-related PR1 and PR17b genes after a subsequent treatment with chitin. Noticeable was the stronger accumulation of lignin. Our results suggest that appropriate genetic background is required for AHL-induced priming. At the same time, they bear potential to use these genetic features for new breeding and plant protection approaches.

Details

ISSN :
24712906
Volume :
3
Database :
OpenAIRE
Journal :
Phytobiomes Journal
Accession number :
edsair.doi.dedup.....7029e0eb880427d7c18f61c693d1981e
Full Text :
https://doi.org/10.1094/pbiomes-03-19-0015-r