Back to Search
Start Over
Dynamic modeling of nylon mooring lines for a floating wind turbine
- Source :
- Applied Ocean Research, Applied Ocean Research, Elsevier, 2019, 87, pp.1-8. ⟨10.1016/j.apor.2019.03.013⟩
- Publication Year :
- 2019
- Publisher :
- Elsevier BV, 2019.
-
Abstract
- International audience; As current attention of the offshore industry is drawn by developing pilot farms of Floating Wind Turbines (FWTs) in shallow-water between 50m and 100m, the application of nylon as a mooring component can provide a more cost-effective design. Indeed, nylon is a preferred candidate over polyester for FWT mooring mainly because of its lower stiffness and a corresponding capacity of reducing maximum tensions in the mooring system. However, the nonlinear behaviors of nylon ropes (e.g. load-elongation properties, fatigue characteristics, etc.) complicate the design and modeling of such structures. Although previous studies on the mechanical properties and modeling of polyester may be very good references, those can not be applied directly for nylon both on testing and modeling methods. In this study, first, an empirical expression to determine the dynamic stiffness of a nylon rope is drawn from the testing data in the literature. Secondly, a practical modeling procedure is suggested by the authors in order to cope with the numerical mooring analysis for a semi-submersible type FWT taking into account the dynamic axial stiffness of nylon ropes. Both the experimental and numerical results show that the tension amplitude has an important impact on the dynamic stiffness of nylon ropes and, as a consequence, the tension responses of mooring lines. This effect can be captured by the present modeling procedure. Finally, time domain mooring analysis for both Ultimate Limit State (ULS) and Fatigue Limit State (FLS) is performed to illustrate the advantages and conservativeness of the present approach for nylon mooring modeling.
- Subjects :
- Computer science
Polyester
020101 civil engineering
Ocean Engineering
Floating wind turbine
02 engineering and technology
01 natural sciences
010305 fluids & plasmas
0201 civil engineering
Floating Wind Turbine
0103 physical sciences
medicine
Limit state design
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
14. Life underwater
Numerical Modeling
Tension (physics)
Nylon
Stiffness
Dynamic Stiffness
Mooring
Fatigue limit
Mooring Line
medicine.symptom
Rope
Marine engineering
Test data
Subjects
Details
- ISSN :
- 01411187
- Volume :
- 87
- Database :
- OpenAIRE
- Journal :
- Applied Ocean Research
- Accession number :
- edsair.doi.dedup.....6fe049ac770e30d8c1256fdf7d858b6e
- Full Text :
- https://doi.org/10.1016/j.apor.2019.03.013