Back to Search Start Over

Machine learning-based observation-constrained projections reveal elevated global socioeconomic risks from wildfire

Authors :
Yan Yu
Jiafu Mao
Stan D. Wullschleger
Anping Chen
Xiaoying Shi
Yaoping Wang
Forrest M. Hoffman
Yulong Zhang
Eric Pierce
Source :
Nature communications. 13(1)
Publication Year :
2021

Abstract

Reliable projections of wildfire and associated socioeconomic risks are crucial for the development of efficient and effective adaptation and mitigation strategies. The lack of or limited observational constraints for modeling outputs impairs the credibility of wildfire projections. Here, we present a machine learning framework to constrain the future fire carbon emissions simulated by 13 Earth system models from the Coupled Model Intercomparison Project phase 6 (CMIP6), using historical, observed joint states of fire-relevant variables. During the twenty-first century, the observation-constrained ensemble indicates a weaker increase in global fire carbon emissions but higher increase in global wildfire exposure in population, gross domestic production, and agricultural area, compared with the default ensemble. Such elevated socioeconomic risks are primarily caused by the compound regional enhancement of future wildfire activity and socioeconomic development in the western and central African countries, necessitating an emergent strategic preparedness to wildfires in these countries.

Details

ISSN :
20411723
Volume :
13
Issue :
1
Database :
OpenAIRE
Journal :
Nature communications
Accession number :
edsair.doi.dedup.....6fbd5ba32b7d3c34dad73c7d17eb017c