Back to Search
Start Over
IBM Federated Learning: an Enterprise Framework White Paper V0.1
- Publication Year :
- 2020
-
Abstract
- Federated Learning (FL) is an approach to conduct machine learning without centralizing training data in a single place, for reasons of privacy, confidentiality or data volume. However, solving federated machine learning problems raises issues above and beyond those of centralized machine learning. These issues include setting up communication infrastructure between parties, coordinating the learning process, integrating party results, understanding the characteristics of the training data sets of different participating parties, handling data heterogeneity, and operating with the absence of a verification data set. IBM Federated Learning provides infrastructure and coordination for federated learning. Data scientists can design and run federated learning jobs based on existing, centralized machine learning models and can provide high-level instructions on how to run the federation. The framework applies to both Deep Neural Networks as well as ``traditional'' approaches for the most common machine learning libraries. {\proj} enables data scientists to expand their scope from centralized to federated machine learning, minimizing the learning curve at the outset while also providing the flexibility to deploy to different compute environments and design custom fusion algorithms.<br />17 pages
- Subjects :
- FOS: Computer and information sciences
Computer Science - Machine Learning
Computer Science - Cryptography and Security
I.2.11
I.2.6
Computer Science - Distributed, Parallel, and Cluster Computing
Distributed, Parallel, and Cluster Computing (cs.DC)
Cryptography and Security (cs.CR)
Machine Learning (cs.LG)
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....6f8924a14b571d47acfe6f2bb34aae43